Problem 7
Show that the two maps
\[f_r(x) = rx(1-x), \quad g_a(x) = a - x^2 \]
(considered as maps on \(\mathbb{R} \)) are topologically conjugate via a linear homeomorphism (i.e. via \(h(x) = \alpha x + \beta \) with suitable \(\alpha \) and \(\beta \)) when a relation between the parameters \(r \) and \(a \) is imposed.

Problem 8
Let \(S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \} \) denote the boundary of the unit circle in the complex plane, and let \(|z - z'| \) denote the distance between two points in \(S^1 \). Consider the map \(R_\alpha : S^1 \to S^1 \) defined by (rotation by the angle \(\alpha \))
\[R_\alpha(z) = \exp(i\alpha)z, \quad (\alpha \in \mathbb{R}). \]
Show that the map \(R_\alpha \) is not topologically transitive when \(\alpha \) is a rational multiple of \(2\pi \), i.e. \(\alpha = 2\pi p/q, \quad p/q \in \mathbb{Q} \).