Turing and the Riemann Hypothesis

Robin Whitty

London South Bank University

Touring Turing, Rewley House, July 2012
The Riemann zeta function

In 1859 Bernard Riemann studied the following function in connection with the distribution of prime numbers:

\[\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \ldots = \sum_{n=1}^{\infty} \frac{1}{n^s}. \]

Note the gap at \(s = 1 \) because the harmonic numbers

\[H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n} \]

go to \(\infty \) as \(n \) goes to \(\infty \).
Analytic continuation

The sum $\sum_{n=1}^{\infty} \frac{1}{n^s}$ only makes sense for $s > 1$. But we can make a continuation to the whole complex plane (numbers of the form $a + b \times \sqrt{-1}$).

This is analogous to the continuation (extrapolation) from individual points to a continuous line:
The Riemann zeta function for complex numbers

One version of the continuation of zeta:

$$\zeta(s) = \frac{1}{1 - 2^{1-s}} \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{k=0}^{n} (-1)^n \binom{n}{k} \frac{1}{(1 + k)^s}.$$

Riemann conjectured that the only time this version of $\zeta(s)$ is zero is when

$$s = \frac{1}{2} + t\sqrt{-1},$$

for some value of t (except for some trivial cases).

This is a line through $x = \frac{1}{2}$, parallel to the y axis. It is called the critical line.

The Riemann Hypothesis: all nontrivial zeros of $\zeta(s)$ lie on the critical line.
Why does RH matter?

The **Prime Number Theorem** says that $\pi(x)$, the number of primes $\leq x$, is ‘approached’ by $\frac{x}{\ln x}$ (the ratio of this to $\pi(x)$ gets closer and closer to 1).

The actual *difference* between $\pi(x)$ and $x/\ln x$ gets bigger and bigger. All we know is, it is bounded by roughly some power of x:

$$\left| \pi(x) - \frac{x}{\ln x} \right| \leq Cx^{\alpha+1/2},$$

where C is a constant.

What is α? It is the maximum horizontal distance of zeros of $\zeta(s)$ from the critical line.

So RH $\Rightarrow \alpha = 0 \Rightarrow$ a square root error in our approximation of $\pi(x)$.

(Actually there is some small print which replaces the $x/\ln x$ approximation in all this with a more accurate ‘integral function’ called Li(x); but the basic idea is the same.)
Jeffrey Lagarias’s version of RH

An elementary (not involving $\sqrt{-1}$) equivalent to RH was found by Jeffrey Lagarias in 2001, using a 1984 theorem of Guy Robin:

RH is true if and only if:

For all positive integers n,

$$\sigma(n) \leq H_n + e^{H_n} \ln H_n,$$

where $\sigma(n)$ is the sum of the positive divisors of n, not including n:

\[
\begin{align*}
\text{E.g. } \sigma(6) &= 1 + 2 + 3 + 6 = 12 \\
H_6 &= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = 2.45 \\
2.45 + e^{2.45} \times \ln(2.45) &\approx 2.45 + 11.59 \times 0.90 \approx 12.88
\end{align*}
\]
Turing’s involvement in RH

Turing worked intermittently on calculating zeros of $\zeta(s)$. His last ever research paper (published 1953) proposed a method for calculating

$$N(t) = \text{no. of zeros } a + b \times \sqrt{-1} \text{ with } 0 < b \leq t,$$

(with $a = 1/2$ if RH is true).

At this time there was little empirical evidence for RH and Turing was a sceptic, looking for counterexamples.

Today over 10 billion zeros have been checked and found to lie on the critical line. But the ‘Turing method’ for $N(t)$ is still in use and has been extended to related parts of analytic number theory.