On Hamiltonian cycle systems with a nice automorphism group

Francesca Merola
Università Roma Tre

15 April 2015

Hamiltonian cycle systems

- a Hamiltonian cycle system for the graph Γ, $|V(\Gamma)| = n$ is a set $B = \{C_1, \ldots, C_s\}$ of n-cycles of Γ
- such that the edges $E(C_1), \ldots, E(C_s)$ form a partition of $E(\Gamma)$
- often $\Gamma = K_n$, n odd

![Graphs showing Hamiltonian cycles](image-url)
a Hamiltonian cycle system for the graph Γ, $|V(\Gamma)| = n$ is a set $B = \{C_1, \ldots, C_s\}$ of n-cycles of Γ

such that the edges $E(C_1), \ldots, E(C_s)$ form a partition of $E(\Gamma)$

often $\Gamma = K_n$, n odd

or $K_n - I$, I a 1-factor, n even
a Hamiltonian cycle system for the graph Γ, $|V(\Gamma)| = n$ is a set $B = \{C_1, \ldots, C_s\}$ of n-cycles of Γ

such that the edges $E(C_1), \ldots E(C_s)$ form a partition of $E(\Gamma)$

often $\Gamma = K_n$, n odd

or $K_n - I$, I a 1-factor, n even
more generally: graph decomposition

- Let G be a graph with vertex set $V(G)$ and edge set $E(G)$
- A decomposition of G is a set of subgraphs of G whose edge sets partition the edge set of G
- A (G, Γ)-decomposition is a decomposition in which the subgraphs are all isomorphic to Γ

A (K_7, K_3)-decomposition [or a (K_7, C_3)-decomposition]
the vertices of the K_3s are
$\{0, 1, 3\}, \{1, 2, 4\}, \{2, 3, 5\}, \{3, 4, 6\}, \{0, 4, 5\}, \{1, 5, 6\}, \{0, 2, 6\}$
existence - Walecki’s construction

n odd

n even

removed 1-factor: $[0, 3], [1, 4], [2, 5], [\infty, \infty]$

regular cycle systems

- a HCS is **regular** if there is an automorphism group G of Γ
 - acting sharply transitively on the vertices of Γ
 (so we identify $V(\Gamma)$ with G)
 - permuting the cycles of B
- it is called **cyclic** if G is a cyclic group
- we shall call it **dihedral** if G is a dihedral group
- to construct regular cs it is enough to give its **base cycles** –
 i.e. a set \mathcal{F} of representatives for the G-orbits of the cycles
the existence of Hamiltonian cyclic CS is completely settled

- n odd: \exists a cyclic cs for K_n iff $n \neq 15$ and $n \neq p^\alpha$ (p an odd prime and $\alpha > 1$) [Buratti, Del Fra (2004)]
- n even, \exists a cyclic cs for $K_n - I$, iff $n \equiv 2, 4 \pmod{8}$ and $n \neq 2p^\alpha$ (p an odd prime and $\alpha \geq 1$) [Gavlas-Jordon, Morris (2008)]
• we may consider a decomposition of Γ into k-cycles ($k < n$)
• obvious necessary conditions for existence of a k-CS of Γ
 • $3 \leq k \leq V(\Gamma)$; the vertices of Γ have even degree; $k \mid E(\Gamma)$
• when $\Gamma = K_n$, n odd or $K_n - I$, I a 1-factor, n even these conditions are also sufficient
• Alspach and Gavlas-Jordon (2001) for n and k both odd or both even, Šajna (2002) in the remaining cases
• but for cyclic k-CS \exists known only for $n \equiv 1, k \pmod{2k}$

dihedral HCS

• consider a hamiltonian cycle system regular under the dihedral group D_n, n even, $n = 2m$
• the graph is $K_{2m} - I$, I a 1-factor

Theorem (M. Buratti, FM, 2013)

There is a dihedral $(K_{2m} - I, C_{2m})$-design for all even m. There is a dihedral hamiltonian cycle system for $K_{2m} - I$, m an odd integer, iff

1. m has at least two distinct prime factors
2. there is a suitable e such that $p \equiv 1 \pmod{2^e}$ for all prime factors p of m and the number of those (counted with their respective multiplicities) such that $p \not\equiv 1 \pmod{2^{e+1}}$ is even.

• note that, in the cyclic case, there is no hamiltonian cycle system when $n \equiv 0 \pmod{8}$
• the odd integers < 100 for which there is a dihedral HCS are 21, 33, 45, 57, 65, 69, 77, 93
a dihedral HCS for $K_8 - I$

$D_8 = \{1, x, x^2, x^3, y, xy, x^2y, x^3y\}, \ (x^3 = y^2 = 1, yxy = x^3)$

the removed 1-factor is $[1, y] \ [x^2, x^2y] \ [x^3, xy] \ [x, x^3y]$

sharply vertex-transitive HCS

- a sharply vertex-transitive HCS(n) exists
 - for n odd, iff $15 \neq n \neq p^\alpha \ p$ prime, $\alpha > 1$
 - for n even, iff $15 \neq \frac{n}{2} \neq p^\alpha \ p$ prime, $\alpha \geq 1$
- this comes from the cyclic and dihedral results
- plus some extra cases when $\frac{n}{2} \equiv 3 \ (\text{mod} \ 4)$
 (Buratti, unpublished)
- but - for which groups G is there a HCS which is sharply vertex transitive under G?
- not known and hard
1-rotational HCS\(n=2k+1\)

- symmetric terrace of a binary (1 involution, \(\lambda\)) group
- an ordering of the elts of \(G\) of the form
 \[(g_1, g_2, \ldots, g_k, g_k + \lambda, \ldots, g_2 + \lambda, g_1 + \lambda)\]
such that \(\{\pm(g_{i+1} - g_i, 1 \leq i \leq k - 1)\} = G \setminus \{0, \lambda\}\)
- e.g. for \(\mathbb{Z}_8\) \((0, 1, 7, 2, 6, 3, 5, 4)\)
- Bailey-Ollis-Preece (2003) ST \(\Rightarrow\) 1-rotational HCS under \(G\)
- Anderson-Ihrig (1993) \(G \neq Q_8\) and soluble \(\Rightarrow\) \(G\) has ST
- \(G\) non soluble - open
- Buratti-Rinaldi-Traetta (2013) 1-rotational HCS under \(G\)
 \(\Rightarrow\) ST
- BOP+BRT for \(k \geq 6\) up to isomorphism at least \(2^{\frac{3k}{4}}\)
 1-rotational \(HCS(2k+1)\)

full automorphism group

- want to determine the groups \(G\) for which there is an HCS whose full automorphism group is \(G\)
- there is a very recent result by Buratti, Lovegrove, Traetta
- necessary condition:
 - \(G \simeq AGL(1, p)\) \(p\) prime or
 - \(G\) is binary or
 - \(|G|\) is odd
- also sufficient with the possible exception of \(G\) binary and non soluble.