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Steiner systems S(2, k, v)
For k ≥ 3, a Steiner system S(2, k, v) is usually defined as a pair (V,B), where V is a set
of cardinality v of points and B is a set of k-element subsets of V , usually called blocks,
or lines if the system has some geometric significance, with the property that each pair
of points is contained in precisely one block. For example, to construct a Steiner system
S(2, 3, 7) we may take V = {0, 1, 2, 3, 4, 5, 6} and

B = {{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}}.

In this example each line has three points and a point occurs at the intersection of three
lines, This is the Fano plane, a finite projective plane of order 2.

We say that a positive integer v is admissible if v(v − 1) ≡ 0 (mod k(k− 1)) and v − 1 ≡
0 (mod k−1). A necessary condition for the existence of a Steiner system S(2, k, v) is that
v is admissible. This guarantees that the cardinality of the block set, v(v−1)/(k(k−1)), as
well as the number of times a specific point occurs amongst the blocks, (v−1)/(k−1), are
both non-negative integers. Numbers of the form v = k(k−1)x+1 and v = k(k−1)x+k,
x ≥ 0, are always admissible, and if k is a prime power there are no others.

The existence problem for given k asks for which admissible v does there exist a Steiner
system S(2, k, v). Two trivial Steiner systems always exist, namely the S(2, k, 1), with
empty block set, and the S(2, k, k), where there is a single block of size k. The existence
problem is completely solved for k = 3 (Kirkman, 1847) and for k = 4, 5 (Hanani, 1961);
Steiner systems S(2, k, v) exist for k = 3, 4, 5 and all admissible v. For k = 6, 7, 8, 9,
the existence problem is solved for all except a small number of admissible v; see [2] for
details. For prime power q, there are a few infinite classes of known designs (see [2] and
[4] for details):

(i) S(2, q, qn), affine geometries (affine planes when n = 2),
(ii) S(2, q, q2n+2 − q2n+1 + q), q ≥ 3,

(iii) S(2, q + 1, qn + · · ·+ q + 1), projective geometries (projective planes if n = 2),
(iv) S(2, q + 1, q3 + 1), unital designs,
(v) S(2, q + 1, q2n+1 + 1),
(vi) S(2, q + 1, q2n+2 + q2n+1 + 1),

(vii) S(2, q + 1, q2n+2 + q + 1),
(viii) S(2, 2r, 22r+1 − 2r), r ≥ 2, oval designs,
(ix) S(2, 2r, 2r+s + 2r − 2s), s > r ≥ 2, Denniston designs.

The only known Steiner system with k ≥ 10 and (v − 1)/(k − 1) ≤ 41 apart from affine
and projective planes is the oval/Denniston design S(2, 16, 496) [4].

Admissibility is not always sufficient. Fisher’s inequality asserts that a non-trivial S(2, k, v)
must have at least as many blocks as points, implying that v ≥ k(k−1)+1. Also we have
the Bruck-Ryser theorem. If a Steiner system S(2, k, k2) (affine plane of order k) exists
and k ≡ 1 or 2 (mod 4), then k is the sum of two integer squares. Moreover, a Steiner
system S(2, k + 1, k2 + k + 1) (projective plane of order k) exists if and only if an affine
plane of order k exists. Hence there is no S(2, k, k2) and no S(2, k + 1, k2 + k + 1) for
k = 6, 14, 21, 22, 30, . . . . Finally, there is no S(2, 10, 100) and no S(2, 11, 111) (Lam, Thiel
& Swiercz, 1989), and there is no S(2, 6, 42) (Houghten, Thiel, Janssen & Lam, 2001).

Let us look at the case k = 10. For non-prime-power k further residue classes modulo
k(k − 1) are admissible, and indeed when k = 10 the admissible v are 90x + d, d =
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1, 10, 45, 55, x ≥ 0. The trivial S(2, 10, 1) and S(2, 10, 10) exist. However S(2, 10, 45) and
S(2, 10, 55) do not by Fisher’s inequality. The next in the sequence is S(2, 10, 91), the
projective plane of order 9, which exists, followed by S(2, 10, 100), the affine plane of order
10, which does not. Ignorance prevents me from saying anything about S(2, 10, 135),
S(2, 10, 145) and many others with small v. Some designs appear in [1], and I have
managed to produce examples of S(2, 10, v) with v = 1621, 2161, 2251, 2341 (Zoe’s
design II), 2521, 2791, 2971, 3061, 3331, 3511 and 3691.

The extremal existence problem was solved by R. M. Wilson in 1975 [7]. Given k ≥ 3,
for all sufficiently large admissible v, there exists a Steiner system S(2, k, v). And more
recently the extremal existence problem was solved by Peter Keevash for more general
designs. Given t ≥ 2 and k > t, for all sufficiently large admissible v, there exists a
Steiner system S(t, k, v).

Although Wilson and Keevash appear to have killed the subject, one can nevertheless
argue that there is still quite a lot of work to do, especially for k ≥ 10 in the finite but
vast range from v = 1 to ‘sufficiently large’. So I suggest that the concrete existence
problem might have some interest: given suitable k, exhibit a non-trivial Steiner system
S(2, k, v), or more generally, given suitable t and k, exhibit a non-trivial Steiner system
S(t, k, v). As far as I am aware, even for S(2, k, v) designs this problem has not been
solved for large k where neither k nor k − 1 is a prime power. I have found Steiner
systems S(2, 15, 243391), S(2, 21, 2031451) and S(2, 22, 4578883) but I do not know of a
single example of a non-trivial S(2, 100, v), say.

A cyclic Steiner system S(2, k, v) is one where the block set is invariant under the mapping
x 7→ x+ 1 (mod v). The S(2, 3, 7) is cyclic. We may take the single starter block {0, 1, 3}
and generate the entire block set by repeated application of x 7→ x+1 (mod 7). Similarly,
the 57 blocks of a cyclic S(2, 3, 19) are obtained from the three starter blocks

{1, 3, 9}, {8, 5, 15}, {7, 2, 6}

under the action of the mapping x 7→ x + 1 (mod 19). A cyclic Steiner system S(2, k, v)
exists if the differences generated by the starter blocks cover all non-zero elements of Zv.
You can confirm that the differences generated by the starter blocks of the S(2, 3, 19),
namely

{±2,±6,±8}, {±3,±9,±7}, {±5,±4,±1},
are indeed all distinct and non-zero modulo 19. In general a cyclic Steiner system of the
form S(2, k, k(k − 1)t+ 1) requires t starter blocks.

A simple form of Wilson’s theorem

Theorem 1 Given k ≥ 3, for all sufficiently large t, there exists a Steiner system
S(2, k, v) whenever v = k(k − 1)t+ 1 is prime.

Proof Suppose k ≥ 3, t ≥ 1 and v = k(k − 1)t + 1 is prime. Let ρ be a primitive root
modulo v and for x 6≡ 0 (mod v) define log x as the unique number φ, 0 ≤ φ ≤ v − 2,
such that x = ρφ. Henceforth let us agree to do arithmetic modulo v on the elements of
Zv and modulo v − 1 on their logarithms.

Write K = k(k − 1)/2 and let w = ρK . Then wt = −1 and wh 6= ±1 for 0 < h ≤ t − 1.
Let

B = {1, a, a2, . . . , ak−1}
and we shall attempt to find a such that {whB : 0 ≤ h ≤ t− 1} form the t starter blocks
of a cyclic Steiner design S(2, k, v). For this to happen the set of differences

D = {(−1)εwh(as − ar) : ε = 0, 1, 0 ≤ h ≤ t− 1, 0 ≤ r < s ≤ k − 1}
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must cover the non-zero residues modulo v. Observe that there are K = k(k−1)/2 choices
for (r, s), t choices for h and two choices for ε, making a total of 2Kt = v − 1. Therefore
the elements of D as described must be distinct modulo v. Taking logs gives

∆ = {εKt+Kh+ log(as − ar) : ε = 0, 1, 0 ≤ h ≤ t− 1, 0 ≤ r < s ≤ k − 1}

since −1 = ρKt. We now require ∆ to cover all residues modulo v − 1 = 2Kt. But

{K(εt+ h) : ε = 0, 1, 0 ≤ h ≤ t− 1}

covers all multiples of K and is independent of a. Therefore it suffices to choose a such
that the K numbers

∆r,s = log(as − ar), 0 ≤ r < s ≤ k − 1,

cover the residue classes modulo K. This construction really does work sometimes for
large k and small v. For instance, a = 16662 and multiplier w = 118347 give the Steiner
system S(2, 15, 243391), where t = 1159, ρ = 3 and ak = 1. Note that any number of the
form wj with gcd(j, 2t) = 1 can be be used as the multiplier, the smallest one for this
design being 234 = 1183471017.

Let Φn(x) denote the n-th cyclotomic polynomial, so that

Φ1(x) = x− 1, Φ2(x) = x+ 1, Φ3(x) = x2 + x+ 1, Φ4(x) = x2 + 1, . . . .

Then, recalling that xn − 1 =
∏

d|n Φd(x),

∆r,s = log(as − ar) = r log a+
∑
d|s−r

log Φd(a).

By choosing suitable values modulo K for log a and log Φd(a) we can ensure that the K
values of ∆r,s, 0 ≤ r < s ≤ k − 1, cover the residues modulo K. For this purpose we
define

γn = (n− 1)k − n(n− 1)

2
−

∑
d|n, 1<d<n

γd.

Observe that if

log a ≡ α, gcd(α,K) = 1, and log Φn(a) ≡ αγn, n = 2, 3, . . . , k − 1, (mod K) (1)

then

∆r,s ≡ log(a− 1) + αr + α
∑

d|s−r, d>1

γd, 0 ≤ r < s ≤ k − 1 (mod K)

will indeed have the desired property. For example, with k = 6 we have γ2 = 5, γ3 = 9,
γ4 = 7, γ5 = 14, and we can compute ∆r,s as in the following table.

r s ∆r,s − log(a− 1) r s ∆r,s − log(a− 1) r s ∆r,s − log(a− 1)
0 1 0 1 2 α 2 4 α(2 + γ2) = 7α
0 2 αγ2 = 5α 1 3 α(1 + γ2) = 6α 2 5 α(2 + γ3) = 11α
0 3 αγ3 = 9α 1 4 α(1 + γ3) = 10α 3 4 3α
0 4 α(γ2 + γ4) = 12α 1 5 α(1 + γ2 + γ4) = 13α 3 5 α(3 + γ2) = 8α
0 5 αγ5 = 14α 2 3 2α 4 5 4α
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So it suffices to find a such that (1) holds with α = 1, say. Define a multiplicative
character of order K modulo v by χ(x) = exp(2πi/K log(x)). Define χ(0) = 0. Define
the polynomials

f1(x) = xρ−1, fn(x) = Φn(x)ρ−γn , n = 2, 3, . . . , k − 1.

We now want to show that there exists a such that

χ(fn(a)) = 1 for 1 ≤ n ≤ k − 1, (2)

for then we will have log fn(a) ≡ 0 (mod K), n = 1, 2, . . . , k − 1. Let

π(x) =
k−1∏
n=1

K−1∑
in=0

χ(fn(x)in) =

(
K−1∑
i1=0

χ(f1(x)i1)

)
. . .

 K−1∑
ik−1=0

χ(fk−1(x)ik−1)

.
If (2) holds then π(a) = Kk−1. On the other hand, if χ(fn(a)) 6= 1 for some n, then
π(a) = 0 except possibly for those a corresponding to roots of fn(x). Here we are using
the fact that

1 + χ(z) + χ(z)2 + · · ·+ χ(z)K−1 =


1 if χ(z) = 0,
K if χ(z) = 1,
0 if χ(z) 6= 0, 1.

So we have reduced our task to showing that there exists a such that π(a) 6= 0 and a
avoids the roots of the polynomials fn(x). Put

Σ =
v−1∑
x=0

π(x)

and observe that

π(x) = 1 +
K−1∑
i1=0

K−1∑
i2=0

· · ·
K−1∑
ik−1=0

i1, i2, ..., ik−1 not all zero

k−1∏
n=1

χ(fn(x)in),

as can be seen by multiplying out the expression for π(x) and splitting off the term where
all the exponents of the fn(x) are zero. Thus

Σ =
v−1∑
x=0

1 +
K−1∑
i1=0

K−1∑
i2=0

· · ·
K−1∑
ik−1=0

i1, i2, ..., ik−1 not all zero

k−1∏
n=1

χ(fn(x)in)


= v +

K−1∑
i1=0

K−1∑
i2=0

· · ·
K−1∑
ik−1=0

i1, i2, ..., ik−1 not all zero

v−1∑
x=0

χ

(
k−1∏
n=1

fn(x)in

)
.

Now if m > n ≥ 1 and v divides neither m nor n, then gcd(Φm(x),Φn(x)) = 1 in Zv[x]
(see, for example [5, Theorem 8.2.2]). Moreover, if v does not divide n, xn − 1 has no
repeated roots in Zv[x] ([5, Corollary 8.2.1]). Therefore, provided v is not too small, none
of the polynomials

∏k−1
n=1 fn(x)in can be a constant multiple of a K-th power modulo v.

So it follows from Weil’s theorem [6, Theorem 2C] that

v−1∑
x=0

χ

(
k−1∏
n=1

fn(x)in

)
= O(

√
v).
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Hence we have Σ > v−O(
√
v) and therefore, since the number of roots of the polynomials

fn(x) is bounded as v →∞, for sufficiently large v there exists a such that π(a) 6= 0 and
fn(a) 6= 0 for n = 1, 2, . . . , k − 1. �

Alternatively, if t is odd, we can put w = ρ2K . The set of logarithms of differences becomes

∆′ = {εKt+ 2Kh+ log(as − ar) : ε = 0, 1, 0 ≤ h ≤ t− 1, 0 ≤ r < s ≤ k − 1}

in which {εt+ 2h : ε = 0, 1, 0 ≤ h ≤ t− 1} covers the multiples of K modulo v − 1, and
the proof proceeds as before. For instance, multipliers 77314 = 3210 and 305 = 77314313

also work with a = 16662 to create a Steiner system S(2, 15, 243391).

It would not be surprising if there is no realistic prospect of finding a multiplier system
S(2, k, k(k− 1)t+ 1) with large k and base block {1, a, . . . , ak−1} where the somewhat re-
strictive condition (1) actually holds. The value a = 16662 used as above for constructing
an S(2, 15, 243391) does not satisfy (1). On the other hand, a = 107466 with ρ = 17 for
S(2, 7, 173293) and a = 118008 with ρ = 5 for S(2, 8, 1287553) do.

The proof should work also for powers of sufficiently large primes using appropriate Galois
fields. Or one can use the product construction: given Steiner systems S(2, k, v) and
S(2, k, w) as well as k − 2 MOLS of side v, there exists a Steiner system S(2, k, vw).
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