MASIIS

Prellberg

Lecture 31

MAS115 Calculus I Week 12

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

2007/08

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ● ●

• Tests for Convergence/Divergence of Integrals

• Tests for Convergence/Divergence of Integrals

userid: sciolism, password: deleterious

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Prellberg

Lecture 31

Polar Coordinates

How can we describe a point P in the plane?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Prellberg

Lecture 31

Polar Coordinates

How can we describe a point P in the plane?

• give x and y coordinates:

(x, y) Cartesian coordinates

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Prellberg

Lecture 31

Polar Coordinates

How can we describe a point P in the plane?

• give x and y coordinates:

(x, y) Cartesian coordinates

• Alternatively, we could decide to give

 (r, θ) polar coordinates

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Prellberg

Lecture 31

Polar Coordinates

How can we describe a point P in the plane?

- give x and y coordinates:
 - (x, y) Cartesian coordinates
- Alternatively, we could decide to give

- r: the distance from the origin, O
- θ : the angle between *OP* and the positive *x*-direction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prellberg

Lecture 31

Polar Coordinates

A slight complication: while Cartesian coordinates are unique, polar coordinates are not!

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

Prellberg

Polar Coordinates

Lecture 31

A slight complication: while Cartesian coordinates are unique, polar coordinates are not!

• the angle θ can vary by multiples of 2π

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Prellberg

Polar Coordinates

Lecture 31

A slight complication: while Cartesian coordinates are unique, polar coordinates are not!

• the angle θ can vary by multiples of 2π

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• if r = 0, the angle θ can assume any value

Prellberg

Polar Coordinates

Lecture 31

A slight complication: while Cartesian coordinates are unique, polar coordinates are not!

• We allow negative values for r

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Prellberg

Polar Coordinates

Lecture 31

A slight complication: while Cartesian coordinates are unique, polar coordinates are not!

• We allow negative values for r

Note: sometimes negative r is excluded (distances should not be negative), but we will find it useful for calculations.

Example

Preliberg

Lecture 31

Find all polar coordinates of the point (2, $\pi/6$):

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Prellberg

Lecture 31

Example

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Prellberg

Lecture 31

Find all polar coordinates of the point $(2, \pi/6)$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• *r* = 2:

Example

Prellberg

Lecture 31

Example

• r = 2: $\theta = \pi/6$, $\pi/6 \pm 2\pi$, $\pi/6 \pm 4\pi$, $\pi/6 \pm 6\pi$, ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Prellberg

Lecture 31

Example

r = 2: θ = π/6, π/6 ± 2π, π/6 ± 4π, π/6 ± 6π, ...
r = -2:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Prellberg

Lecture 31

Example

r = 2: θ = π/6, π/6 ± 2π, π/6 ± 4π, π/6 ± 6π, ...
r = -2: θ = 7π/6, 7π/6 ± 2π, 7π/6 ± 4π, 7π/6 ± 6π, ...

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Prellberg

Lecture 31

Graphing in Polar Coordinates

Some graphs have simple equations in polar coordinates • a circle about the origin:

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

Prellberg

Lecture 31

Graphing in Polar Coordinates

Some graphs have simple equations in polar coordinates • a circle about the origin:

Prellberg

Lecture 31

Graphing in Polar Coordinates

Some graphs have simple equations in polar coordinates

• a circle about the origin:

r = a

Note: r = a and r = -a both describe the *same* circle of radius |a|.

Prellberg

Lecture 31

Graphing in Polar Coordinates

Some graphs have simple equations in polar coordinates

• a circle about the origin:

r = a

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Note: r = a and r = -a both describe the *same* circle of radius |a|.

• a line through the origin:

Prellberg

Lecture 31

Graphing in Polar Coordinates

Some graphs have simple equations in polar coordinates

• a circle about the origin:

r = a

Note: r = a and r = -a both describe the *same* circle of radius |a|.

• a line through the origin:

$$\theta = \theta_0$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Prellberg

Lecture 31

Graphing in Polar Coordinates

Some graphs have simple equations in polar coordinates

• a circle about the origin:

r = a

Note: r = a and r = -a both describe the *same* circle of radius |a|.

• a line through the origin:

$$\theta = \theta_0$$

Note: Here it becomes convenient to have allowed negative r. Otherwise the graph of $\theta = \theta_0$ would only be a ray ending at the origin.

Prellberg

Lecture 31

Inequalities in Polar Coordinates

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

Example: find the graphs of (a) $1 \le r \le 2$ and $0 \le \theta \le \pi/2$

Prellberg

Lecture 31

Inequalities in Polar Coordinates

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ● ●

Example: find the graphs of
(a)
$$1 \le r \le 2$$
 and $0 \le \theta \le \pi/2$
(b) $-3 \le r \le 2$ and $\theta = \pi/4$

Prellberg

Lecture 31

Inequalities in Polar Coordinates

Example: find the graphs of
(a)
$$1 \le r \le 2$$
 and $0 \le \theta \le \pi/2$
(b) $-3 \le r \le 2$ and $\theta = \pi/4$
(c) $r \le 0$ and $\theta = \pi/4$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ● ●

Prellberg

Lecture 31

Example: find the graphs of
(a)
$$1 \le r \le 2$$
 and $0 \le \theta \le \pi/2$
(b) $-3 \le r \le 2$ and $\theta = \pi/4$
(c) $r \le 0$ and $\theta = \pi/4$
(d) $2\pi/3 \le \theta \le 5\pi/6$

Prellberg

Lecture 31

Example: find the graphs of
(a)
$$1 \le r \le 2$$
 and $0 \le \theta \le \pi/2$
(b) $-3 \le r \le 2$ and $\theta = \pi/4$
(c) $r \le 0$ and $\theta = \pi/4$
(d) $2\pi/3 \le \theta \le 5\pi/6$

◆□▶ ◆□▶ ◆国▶ ◆国▶

Ξ.

MAS115 Relating Polar and Cartesian Coordinates Lecture 31 Ray $\theta = \frac{\pi}{2}$ $P(x, y) = P(r, \theta)$ Common y $\theta = 0, r \ge 0$ origin θ r 0 Initial ray

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ● ●

Converting polar coordinates to Cartesian coordinates:

$$x = r \cos \theta$$
, $y = r \sin \theta$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Converting polar coordinates to Cartesian coordinates:

$$x = r \cos \theta$$
, $y = r \sin \theta$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• given (r, θ) , we can uniquely compute (x, y)

MAS115 Relating Polar and Cartesian Coordinates Lecture 31 Ray $\theta = \frac{\pi}{2}$ $P(x, y) = P(r, \theta)$ Common y origin $\theta = 0, r \ge 0$ Initial ray 0

Converting Cartesian coordinates to polar coordinates:

$$r^2 = x^2 + y^2$$
, $\tan \theta = y/x$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

MASI15 Relating Polar and Cartesian Coordinates

Converting Cartesian coordinates to polar coordinates:

$$r^2=x^2+y^2\;,\quad an heta=y/x$$

 given (x, y), we have to choose one of many polar coordinates.

MASI15 Relating Polar and Cartesian Coordinates

Converting Cartesian coordinates to polar coordinates:

$$r^2 = x^2 + y^2$$
, tan $heta = y/x$

• given (x, y), we have to choose one of many polar coordinates.

Usual convention: $r \ge 0$ and $0 \le \theta < 2\pi$

MASI15 Relating Polar and Cartesian Coordinates

Converting Cartesian coordinates to polar coordinates:

$$r^2 = x^2 + y^2$$
, tan $heta = y/x$

• given (x, y), we have to choose one of many polar coordinates.

Usual convention: $r \ge 0$ and $0 \le \theta < 2\pi$ (if r = 0, choose also $\theta = 0$ for uniqueness) $\beta = 0$ (if r = 0, choose also $\theta = 0$ for uniqueness)
MAS115 Prellberg Lecture 31 Examples: polar: Cartesian:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $r\cos\theta = 2$

Prellberg

Lecture 31

Equivalent Polar and Cartesian Equations

Examples:

polar: Cartesian:

 $r\cos\theta = 2$ x = 2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Prellberg

Lecture 31

Equivalent Polar and Cartesian Equations

Examples:

polar: Cartesian:

2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$r\cos\theta = 2$$
 $x = r^2\cos\theta\sin\theta = 4$

Prellberg

Lecture 31

Equivalent Polar and Cartesian Equations

Examples:

polar: Cartesian:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$r \cos \theta = 2$$
 $x = 2$
 $r^2 \cos \theta \sin \theta = 4$ $xy = 4$

Prellberg

Lecture 31

Equivalent Polar and Cartesian Equations

Examples:

polar: Cartesian:

 $\begin{array}{rrr} x = & 2 \\ xy = & 4 \end{array}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$r \cos \theta = 2$$

$$r^2 \cos \theta \sin \theta = 4$$

$$r^2 \cos 2\theta = 1$$

Prellberg

Lecture 31

Equivalent Polar and Cartesian Equations

Examples:

polar:Cartesian: $r \cos \theta = 2$ x = 2 $r^2 \cos \theta \sin \theta = 4$ xy = 4 $r^2 \cos 2\theta = 1$ $y^2 = x^2 - 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Lecture 31

Equivalent Polar and Cartesian Equations

Examples:

Cartesian: polar: $r\cos\theta = 2$ $r^{2} \cos \theta \sin \theta = 4 \qquad xy = 4$ $r^{2} \cos 2\theta = 1 \qquad y^{2} = x^{2} - 1$ $r(1-2\cos\theta) = 1$

x = 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Lecture 31

Equivalent Polar and Cartesian Equations

Examples:

Cartesian: polar: $r\cos\theta = 2$ $r^2 \cos \theta \sin \theta = 4$ xy = 4 $r^2 \cos 2\theta = 1$ $v^2 = x^2 - 1$ $r(1-2\cos\theta) = 1$

x = 2 $v^2 = (x+1)(3x+1)$

Prellberg

Lecture 31

Equivalent Polar and Cartesian Equations

Examples:

$$x = 2xy = 4y2 = x2 - 1y2 = (x + 1)(3x + 1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Prellberg

Lecture 31

Equivalent Polar and Cartesian Equations

Examples:

polar: Cartesian: $r \cos \theta = 2 \qquad x = 2$ $r^2 \cos \theta \sin \theta = 4 \qquad xy = 4$ $r^2 \cos 2\theta = 1 \qquad y^2 = x^2 - 1$ $r(1 - 2\cos \theta) = 1 \qquad y^2 = (x + 1)(3x + 1)$ $r + \cos \theta = 1 \qquad (x^2 + y^2)^2 = 2x(y^2 - x^2)$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Prellberg

Lecture 31

Equivalent Polar and Cartesian Equations

Examples:

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Sometimes, polar coordinates are a lot simpler!

Prellberg

Lecture 31

Converting Between Polar and Cartesian Equations

• Cartesian to polar

$$x^2 + (y - 3)^2 = 9$$

Prellberg

Lecture 31

Converting Between Polar and Cartesian Equations

• Cartesian to polar

$$x^{2} + (y - 3)^{2} = 9$$

$$\Leftrightarrow (x^{2} + y^{2}) - 6y + 9 = 9$$

Prellberg

Lecture 31

Converting Between Polar and Cartesian Equations

• Cartesian to polar

$$x^{2} + (y - 3)^{2} = 9$$

$$\Leftrightarrow (x^{2} + y^{2}) - 6y + 9 = 9$$

$$\Leftrightarrow r^{2} - 6r\sin\theta = 0$$

Prellberg

Lecture 31

Converting Between Polar and Cartesian Equations

• Cartesian to polar

$$x^{2} + (y - 3)^{2} = 9$$

$$\Leftrightarrow (x^{2} + y^{2}) - 6y + 9 = 9$$

$$\Leftrightarrow r^{2} - 6r \sin \theta = 0$$

$$\Leftrightarrow r = 0 \text{ or } r = 6 \sin \theta$$

Prellberg

Lecture 31

Converting Between Polar and Cartesian Equations

• Cartesian to polar

$$x^{2} + (y - 3)^{2} = 9$$

$$\Leftrightarrow (x^{2} + y^{2}) - 6y + 9 = 9$$

$$\Leftrightarrow r^{2} - 6r \sin \theta = 0$$

$$\Leftrightarrow r = 0 \text{ or } r = 6 \sin \theta$$

Therefore $r = 6 \sin \theta$ describes a circle centred at (0, 3) with radius 3.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Prellberg

Lecture 31

Converting Between Polar and Cartesian Equations

• Cartesian to polar

$$x^{2} + (y - 3)^{2} = 9$$

$$\Leftrightarrow (x^{2} + y^{2}) - 6y + 9 = 9$$

$$\Leftrightarrow r^{2} - 6r \sin \theta = 0$$

$$\Leftrightarrow r = 0 \text{ or } r = 6 \sin \theta$$

Therefore $r = 6 \sin \theta$ describes a circle centred at (0, 3) with radius 3.

Polar to Cartesian

$$r = \frac{4}{2\cos\theta - \sin\theta}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Prellberg

Lecture 31

Converting Between Polar and Cartesian Equations

• Cartesian to polar

$$x^{2} + (y - 3)^{2} = 9$$

$$\Leftrightarrow (x^{2} + y^{2}) - 6y + 9 = 9$$

$$\Leftrightarrow r^{2} - 6r \sin \theta = 0$$

$$\Leftrightarrow r = 0 \text{ or } r = 6 \sin \theta$$

Therefore $r = 6 \sin \theta$ describes a circle centred at (0, 3) with radius 3.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• Polar to Cartesian $r = \frac{4}{2\cos\theta - \sin\theta}$

is equivalent to $2r\cos\theta - r\sin\theta = 4$

Prellberg

Lecture 31

Converting Between Polar and Cartesian Equations

• Cartesian to polar

$$x^{2} + (y - 3)^{2} = 9$$

$$\Leftrightarrow (x^{2} + y^{2}) - 6y + 9 = 9$$

$$\Leftrightarrow r^{2} - 6r \sin \theta = 0$$

$$\Leftrightarrow r = 0 \text{ or } r = 6 \sin \theta$$

Therefore $r = 6 \sin \theta$ describes a circle centred at (0, 3) with radius 3.

Polar to Cartesian

$$r = \frac{4}{2\cos\theta - \sin\theta}$$

is equivalent to $2r \cos \theta - r \sin \theta = 4$ or 2x - y = 4. We therefore have the equation of a line

$$y = 2x - 4$$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 = ∽ 의 ۹ ()~

MAS115 Symmetry in Polar Coordinates Tests for Symmetry Lecture 31 $(r, \pi (r, \theta)$ or $(-r, -\theta)$ • (r, θ) (r, θ) ⋆ x . r 0 0 0 $(r, -\theta)$ $(-r, \theta)$ or $(r, \theta + \pi)$ or $(-r, \pi - \theta)$

(a) About the x-axis

(b) About the y-axis

(c) About the origin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Symmetry Tests for Polar Graphs

- 1. Symmetry about the x-axis: If the point (r, θ) lies on the graph, the point $(r, -\theta)$ or $(-r, \pi \theta)$ lies on the graph
- Symmetry about the y-axis: If the point (r, θ) lies on the graph, the point (r, π θ) or (-r, -θ) lies on the graph
- Symmetry about the origin: If the point (r, θ) lies on the graph, the point (-r, θ) or (r, θ + π) lies on the graph

Prellberg

Lecture 31

The Slope of a Polar Curve

Given $r = f(\theta)$, compute the slope of the curve:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Prellberg

Lecture 31

The Slope of a Polar Curve

- Given $r = f(\theta)$, compute the slope of the curve:
 - The slope is still dy/dx, so think of x and y as given by the parameter θ:

Prellberg

Lecture 31

The Slope of a Polar Curve

Given $r = f(\theta)$, compute the slope of the curve:

 The slope is still dy/dx, so think of x and y as given by the parameter θ:

$$\begin{aligned} x &= f(\theta) \cos \theta \\ y &= f(\theta) \sin \theta \end{aligned}$$

Prellberg

Lecture 31

The Slope of a Polar Curve

Given $r = f(\theta)$, compute the slope of the curve:

 The slope is still dy/dx, so think of x and y as given by the parameter θ:

$$\begin{aligned} x &= f(\theta) \cos \theta \\ y &= f(\theta) \sin \theta \end{aligned}$$

Therefore

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$$

Prellberg

Lecture 31

The Slope of a Polar Curve

Given $r = f(\theta)$, compute the slope of the curve:

 The slope is still dy/dx, so think of x and y as given by the parameter θ:

$$\begin{aligned} x &= f(\theta) \cos \theta \\ y &= f(\theta) \sin \theta \end{aligned}$$

• Therefore $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ with

$$dx/d\theta = f'(\theta)\cos\theta - f(\theta)\sin\theta$$

$$dy/d\theta = f'(\theta)\sin\theta + f(\theta)\cos\theta$$

Prellberg

Lecture 31

Graphing a Polar Curve

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Graph $r = 1 - \cos \theta$:

Graphing a Polar Curve

.

Lecture 31

Graph $r = 1 - \cos \theta$:

• Symmetry: $\cos \theta = \cos(-\theta)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Prellberg

Lecture 31

Graphing a Polar Curve

Graph $r = 1 - \cos \theta$:

• Symmetry: $\cos \theta = \cos(-\theta)$ so both (r, θ) and $(r, -\theta)$ are on the curve:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Prellberg

Lecture 31

Graphing a Polar Curve

Graph $r = 1 - \cos \theta$:

• Symmetry: $\cos \theta = \cos(-\theta)$ so both (r, θ) and $(r, -\theta)$ are on the curve:

The curve is symmetric about the x-axis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Prellberg

Lecture 31

Graphing a Polar Curve

Graph $r = 1 - \cos \theta$:

• Symmetry: $\cos \theta = \cos(-\theta)$ so both (r, θ) and $(r, -\theta)$ are on the curve:

The curve is symmetric about the x-axis

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Monotonicity: $\cos \theta$ is monotonically decreasing on $[0, \pi]$:

Prellberg

Lecture 31

Graphing a Polar Curve

Graph $r = 1 - \cos \theta$:

• Symmetry: $\cos \theta = \cos(-\theta)$ so both (r, θ) and $(r, -\theta)$ are on the curve:

The curve is symmetric about the x-axis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Monotonicity: $\cos \theta$ is monotonically decreasing on $[0, \pi]$: As θ increases from 0 to π $r = 1 - \cos \theta$ increases from 0 to 2

Prellberg

Lecture 31

Graphing a Polar Curve

Graph $r = 1 - \cos \theta$:

• Symmetry: $\cos \theta = \cos(-\theta)$ so both (r, θ) and $(r, -\theta)$ are on the curve:

The curve is symmetric about the x-axis

- Monotonicity: $\cos \theta$ is monotonically decreasing on $[0, \pi]$: As θ increases from 0 to π $r = 1 - \cos \theta$ increases from 0 to 2
- A small table of values:

$$\theta: 0 \pi/3 \pi/2 2\pi/3 \pi$$

 $r = 1 - \cos \theta: 0 1/2 1 3/2 2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prellberg

Lecture 31

Graphing a Polar Curve

Use symmetry and monotonicity, start with table of values

θ	$r = 1 - \cos \theta$
0	0
$\frac{\pi}{3}$	$\frac{1}{2}$
<u>π</u> 2	1
$\frac{2\pi}{3}$	$\frac{3}{2}$
π	2

Prellberg

Lecture 31

Graphing a Polar Curve

Use symmetry and monotonicity, start with table of values

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

θ	$r = 1 - \cos \theta$
0	0
$\frac{\pi}{3}$	$\frac{1}{2}$
<u>π</u> 2	1
$\frac{2\pi}{3}$	$\frac{3}{2}$
π	2

Prellberg

Lecture 31

Graphing a Polar Curve

Use symmetry and monotonicity, start with table of values

Prellberg

Lecture 31

Graphing a Polar Curve

Find horizontal and vertical tangents to $r = f(\theta) = 1 - \cos \theta$:

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Prellberg

Lecture 31

Graphing a Polar Curve

Find horizontal and vertical tangents to $r = f(\theta) = 1 - \cos \theta$: • Recall $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ with $\frac{dy}{dx} = \frac{dy}{dx} + \frac{dy}{d\theta} = \frac{f'(\theta)}{d\theta} = \frac{f'(\theta)}{$

$$\frac{dx}{d\theta} = f'(\theta)\cos\theta - f(\theta)\sin\theta$$
$$\frac{dy}{d\theta} = f'(\theta)\sin\theta + f(\theta)\cos\theta$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Prellberg

Lecture 31

Graphing a Polar Curve

Find horizontal and vertical tangents to $r = f(\theta) = 1 - \cos \theta$: • Recall $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ with $\frac{dx/d\theta}{d\theta} = f'(\theta) \cos \theta - f(\theta) \sin \theta$ $\frac{dy}{d\theta} = f'(\theta) \sin \theta + f(\theta) \cos \theta$ • Compute $\frac{dy}{d\theta} = \frac{\sin^2 \theta + (1 - \cos \theta) \cos \theta}{\cos \theta}$

$$\frac{dx}{dx} = \frac{1}{\sin\theta\cos\theta - (1 - \cos\theta)\sin\theta}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prellberg

.

Lecture 31

Graphing a Polar Curve

Find horizontal and vertical tangents to $r = f(\theta) = 1 - \cos \theta$: • Recall $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ with $\frac{dx/d\theta}{dx} = f'(\theta)\cos\theta - f(\theta)\sin\theta$ $\frac{dy}{d\theta} = f'(\theta)\sin\theta + f(\theta)\cos\theta$ • Compute $\frac{dy}{dx} = \frac{\sin^2\theta + (1 - \cos\theta)\cos\theta}{\sin\theta\cos\theta - (1 - \cos\theta)\sin\theta}$ $= \frac{1 - \cos\theta}{\cos\theta} \cdot \frac{1 + 2\cos\theta}{\cos\theta}$

 $\sin\theta$ \cdot $1-2\cos\theta$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prellberg

Lecture 31

Graphing a Polar Curve

Find horizontal and vertical tangents to $r = f(\theta) = 1 - \cos \theta$: • Recall $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ with $\frac{dx/d\theta}{d\theta} = f'(\theta)\cos\theta - f(\theta)\sin\theta$ • $\frac{dy}{d\theta} = f'(\theta)\sin\theta + f(\theta)\cos\theta$ • Compute $\frac{dy}{dx} = \frac{\sin^2\theta + (1 - \cos\theta)\cos\theta}{\sin\theta\cos\theta - (1 - \cos\theta)\sin\theta}$

$$= \frac{1 - \cos \theta}{\sin \theta} \cdot \frac{1 + 2\cos \theta}{1 - 2\cos \theta}$$

Horizontal tangents at

$$heta=0\;,\quad heta=\pmrac{2}{3}\pi$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prellberg

Lecture 31

Graphing a Polar Curve

Find horizontal and vertical tangents to $r = f(\theta) = 1 - \cos \theta$: • Recall $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ with $\frac{dx/d\theta}{d\theta} = f'(\theta) \cos \theta - f(\theta) \sin \theta$ $\frac{dy}{d\theta} = f'(\theta) \sin \theta + f(\theta) \cos \theta$ • Compute $\frac{dy}{dx} = \frac{\sin^2 \theta + (1 - \cos \theta) \cos \theta}{\sin \theta \cos \theta - (1 - \cos \theta) \sin \theta}$

$$\frac{g}{x} = \frac{\sin \theta + (1 - \cos \theta)\cos \theta}{\sin \theta \cos \theta - (1 - \cos \theta)\sin \theta}$$
$$= \frac{1 - \cos \theta}{\sin \theta} \cdot \frac{1 + 2\cos \theta}{1 - 2\cos \theta}$$

Horizontal tangents at

$$heta = 0 \;, \quad heta = \pm rac{2}{3} \pi$$

Vertical tangents at

$$\theta = \pi$$
, $\theta = \pm \frac{1}{3}\pi$

