MAS115 Calculus I

 Week 12Thomas Prellberg

School of Mathematical Sciences
Queen Mary, University of London
2007/08

- Improper Integrals
- Tests for Convergence/Divergence of Integrals

MAS115 Revision

- Improper Integrals
- Tests for Convergence/Divergence of Integrals
userid: sciolism, password: deleterious

How can we describe a point P in the plane?

How can we describe a point P in the plane?

- give x and y coordinates:

$$
(x, y) \quad \text { Cartesian coordinates }
$$

How can we describe a point P in the plane?

- give x and y coordinates:

$$
(x, y) \quad \text { Cartesian coordinates }
$$

- Alternatively, we could decide to give

$$
(r, \theta) \quad \text { polar coordinates }
$$

How can we describe a point P in the plane?

- give x and y coordinates:

$$
(x, y) \quad \text { Cartesian coordinates }
$$

- Alternatively, we could decide to give

$$
(r, \theta) \quad \text { polar coordinates }
$$

- r : the distance from the origin, O
- θ : the angle between $O P$ and the positive x-direction

A slight complication: while Cartesian coordinates are unique, polar coordinates are not!

Polar Coordinates

A slight complication: while Cartesian coordinates are unique, polar coordinates are not!

- the angle θ can vary by multiples of 2π

Polar Coordinates

A slight complication: while Cartesian coordinates are unique, polar coordinates are not!

- the angle θ can vary by multiples of 2π

- if $r=0$, the angle θ can assume any value

A slight complication: while Cartesian coordinates are unique, polar coordinates are not!

- We allow negative values for r

A slight complication: while Cartesian coordinates are unique, polar coordinates are not!

- We allow negative values for r

Note: sometimes negative r is excluded (distances should not be negative), but we will find it useful for calculations.

MAS115
 Example

Prellberg

Find all polar coordinates of the point $(2, \pi / 6)$:

MAS115
 Example

 Prellberg

 Prellberg}Find all polar coordinates of the point $(2, \pi / 6)$:

MAS115
 Example

 Prellberg

 Prellberg}Find all polar coordinates of the point $(2, \pi / 6)$:

- $r=2$:

MAS115
 Example
 Prellberg

Find all polar coordinates of the point $(2, \pi / 6)$:

MAS115

Example

Prellberg

Find all polar coordinates of the point $(2, \pi / 6)$:

- $r=2: \theta=\pi / 6, \pi / 6 \pm 2 \pi, \pi / 6 \pm 4 \pi, \pi / 6 \pm 6 \pi, \ldots$
- $r=-2$:

MAS115

Example

Prellberg

Find all polar coordinates of the point $(2, \pi / 6)$:

- $r=2: \theta=\pi / 6, \pi / 6 \pm 2 \pi, \pi / 6 \pm 4 \pi, \pi / 6 \pm 6 \pi, \ldots$
- $r=-2: ~ \theta=7 \pi / 6,7 \pi / 6 \pm 2 \pi, 7 \pi / 6 \pm 4 \pi, 7 \pi / 6 \pm 6 \pi, \ldots$

MAS115

Some graphs have simple equations in polar coordinates

- a circle about the origin:

Some graphs have simple equations in polar coordinates

- a circle about the origin:

$$
r=a
$$

Some graphs have simple equations in polar coordinates

- a circle about the origin:

$$
r=a
$$

Note: $r=a$ and $r=-a$ both describe the same circle of radius |a|.

Some graphs have simple equations in polar coordinates

- a circle about the origin:

$$
r=a
$$

Note: $r=a$ and $r=-a$ both describe the same circle of radius |a|.

- a line through the origin:

Some graphs have simple equations in polar coordinates

- a circle about the origin:

$$
r=a
$$

Note: $r=a$ and $r=-a$ both describe the same circle of radius |a|.

- a line through the origin:

$$
\theta=\theta_{0}
$$

Graphing in Polar Coordinates

Some graphs have simple equations in polar coordinates

- a circle about the origin:

$$
r=a
$$

Note: $r=a$ and $r=-a$ both describe the same circle of radius |a|.

- a line through the origin:

$$
\theta=\theta_{0}
$$

Note: Here it becomes convenient to have allowed negative r. Otherwise the graph of $\theta=\theta_{0}$ would only be a ray ending at the origin.

mssus Inequalities in Polar Coordinates

Example: find the graphs of (a) $1 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 2$

MAS115
 Inequalities in Polar Coordinates

Example: find the graphs of (a) $1 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 2$
(b) $-3 \leq r \leq 2$ and $\theta=\pi / 4$

MAS115 Inequalities in Polar Coordinates
 \section*{Prellberg}

Example: find the graphs of (a) $1 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 2$
(b) $-3 \leq r \leq 2$ and $\theta=\pi / 4$
(c) $r \leq 0$ and $\theta=\pi / 4$

Example: find the graphs of (a) $1 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 2$
(b) $-3 \leq r \leq 2$ and $\theta=\pi / 4$
(c) $r \leq 0$ and $\theta=\pi / 4$
(d) $2 \pi / 3 \leq \theta \leq 5 \pi / 6$

Example: find the graphs of (a) $1 \leq r \leq 2$ and $0 \leq \theta \leq \pi / 2$
(b) $-3 \leq r \leq 2$ and $\theta=\pi / 4$
(c) $r \leq 0$ and $\theta=\pi / 4$
(d) $2 \pi / 3 \leq \theta \leq 5 \pi / 6$
(a)

(b)

(c)

(d)

Converting polar coordinates to Cartesian coordinates:

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Converting polar coordinates to Cartesian coordinates:

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

- given (r, θ), we can uniquely compute (x, y)

Converting Cartesian coordinates to polar coordinates:

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=y / x
$$

Converting Cartesian coordinates to polar coordinates:

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=y / x
$$

- given (x, y), we have to choose one of many polar coordinates.

Converting Cartesian coordinates to polar coordinates:

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=y / x
$$

- given (x, y), we have to choose one of many polar coordinates.
Usual convention: $r \geq 0$ and $0 \leq \theta<2 \pi$

Relating Polar and Cartesian Coordinates

Converting Cartesian coordinates to polar coordinates:

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=y / x
$$

- given (x, y), we have to choose one of many polar coordinates.
Usual convention: $r \geq 0$ and $0 \leq \theta<2 \pi$ (if $r=0$, choose also $\theta=0$ for uniqueness)

Examples:

$$
\begin{array}{cl}
\text { polar: } & \text { Cartesian: } \\
r \cos \theta=2 &
\end{array}
$$

Equivalent Polar and Cartesian Equations

Examples:

$$
\begin{array}{cr}
\text { polar: } & \text { Cartesian: } \\
r \cos \theta=2 & x=2
\end{array}
$$

Equivalent Polar and Cartesian Equations

Examples:

$$
\begin{array}{rlr}
\text { polar: } & \text { Cartesian: } \\
r \cos \theta=2 & x=2 \\
r^{2} \cos \theta \sin \theta=4 &
\end{array}
$$

Equivalent Polar and Cartesian Equations

Examples:
polar: Cartesian:

$$
\begin{array}{rlrl}
r \cos \theta & =2 & x & =2 \\
r^{2} \cos \theta \sin \theta & =4 & x y & =4
\end{array}
$$

MAS115
 Equivalent Polar and Cartesian Equations

Examples:
polar: Cartesian:

$$
\begin{array}{rlrl}
r \cos \theta & =2 & x & =2 \\
r^{2} \cos \theta \sin \theta & =4 & x y & =4 \\
r^{2} \cos 2 \theta & =1 &
\end{array}
$$

MAS115
 Equivalent Polar and Cartesian Equations

Examples:
polar: Cartesian:

$$
\begin{array}{rlrl}
r \cos \theta & =2 & x & =2 \\
r^{2} \cos \theta \sin \theta & =4 & x y & =4 \\
r^{2} \cos 2 \theta & =1 & y^{2} & =x^{2}-1
\end{array}
$$

Examples:
polar: Cartesian:

$$
\begin{array}{rlrl}
r \cos \theta & =2 & x & =2 \\
r^{2} \cos \theta \sin \theta & =4 & x y & =4 \\
r^{2} \cos 2 \theta & =1 & y^{2} & =x^{2}-1 \\
r(1-2 \cos \theta) & =1 & &
\end{array}
$$

Examples:
polar: Cartesian:

$$
\begin{aligned}
r \cos \theta & =2 \\
r^{2} \cos \theta \sin \theta & =4 \\
r^{2} \cos 2 \theta & =1 \\
r(1-2 \cos \theta) & =1
\end{aligned}
$$

$$
\begin{aligned}
x & =2 \\
x y & =4 \\
y^{2} & =x^{2}-1 \\
y^{2} & =(x+1)(3 x+1)
\end{aligned}
$$

Examples:
polar: Cartesian:

$$
\begin{array}{rlrl}
r \cos \theta & =2 & x & =2 \\
r^{2} \cos \theta \sin \theta & =4 & x y & =4 \\
r^{2} \cos 2 \theta & =1 & y^{2} & =x^{2}-1 \\
r(1-2 \cos \theta) & =1 & y^{2} & =(x+1)(3 x+1) \\
r+\cos \theta & =1 & &
\end{array}
$$

Examples:
polar: Cartesian:

$$
\begin{array}{rlrl}
r \cos \theta & =2 & x & =2 \\
r^{2} \cos \theta \sin \theta & =4 & x y & =4 \\
r^{2} \cos 2 \theta & =1 & y^{2} & =x^{2}-1 \\
r(1-2 \cos \theta) & =1 & y^{2} & =(x+1)(3 x+1) \\
r+\cos \theta & =1 & \left(x^{2}+y^{2}\right)^{2} & =2 x\left(y^{2}-x^{2}\right)
\end{array}
$$

Examples:

$$
\begin{array}{rlrl}
\text { polar: } & & \text { Cartesian: } \\
r \cos \theta & =2 & x & =2 \\
r^{2} \cos \theta \sin \theta & =4 & x y & =4 \\
r^{2} \cos 2 \theta & =1 & y^{2} & =x^{2}-1 \\
r(1-2 \cos \theta) & =1 & y^{2} & =(x+1)(3 x+1) \\
r+\cos \theta & =1 & \left(x^{2}+y^{2}\right)^{2} & =2 x\left(y^{2}-x^{2}\right)
\end{array}
$$

Sometimes, polar coordinates are a lot simpler!

- Cartesian to polar

$$
x^{2}+(y-3)^{2}=9
$$

Converting Between Polar and Cartesian Equations

- Cartesian to polar

$$
\begin{aligned}
x^{2}+(y-3)^{2} & =9 \\
\Leftrightarrow \quad\left(x^{2}+y^{2}\right)-6 y+9 & =9
\end{aligned}
$$

Converting Between Polar and Cartesian Equations

- Cartesian to polar

$$
\begin{array}{rlrl}
& & x^{2}+(y-3)^{2} & =9 \\
\Leftrightarrow & \left(x^{2}+y^{2}\right)-6 y+9 & =9 \\
\Leftrightarrow & r^{2}-6 r \sin \theta & =0
\end{array}
$$

Converting Between Polar and Cartesian Equations

- Cartesian to polar

$$
\begin{array}{rrr}
& x^{2}+(y-3)^{2}=9 \\
\Leftrightarrow & \left(x^{2}+y^{2}\right)-6 y+9=9 \\
\Leftrightarrow & r^{2}-6 r \sin \theta=0 \\
\Leftrightarrow & r=0 \text { or } & r=6 \sin \theta
\end{array}
$$

- Cartesian to polar

$$
\begin{array}{lrl}
& x^{2}+(y-3)^{2}=9 \\
\Leftrightarrow & \left(x^{2}+y^{2}\right)-6 y+9=9 \\
\Leftrightarrow & r^{2}-6 r \sin \theta=0 \\
\Leftrightarrow & r=0 \text { or } & r=6 \sin \theta
\end{array}
$$

Therefore $r=6 \sin \theta$ describes a circle centred at $(0,3)$ with radius 3 .

- Cartesian to polar

$$
\begin{array}{rrl}
& x^{2}+(y-3)^{2}=9 \\
\Leftrightarrow & \left(x^{2}+y^{2}\right)-6 y+9=9 \\
\Leftrightarrow & r^{2}-6 r \sin \theta=0 \\
\Leftrightarrow & r=0 \text { or } & r=6 \sin \theta
\end{array}
$$

Therefore $r=6 \sin \theta$ describes a circle centred at $(0,3)$ with radius 3.

- Polar to Cartesian

$$
r=\frac{4}{2 \cos \theta-\sin \theta}
$$

- Cartesian to polar

$$
\begin{array}{rrl}
& x^{2}+(y-3)^{2}=9 \\
\Leftrightarrow & \left(x^{2}+y^{2}\right)-6 y+9=9 \\
\Leftrightarrow & r^{2}-6 r \sin \theta=0 \\
\Leftrightarrow & r=0 \text { or } r=6 \sin \theta
\end{array}
$$

Therefore $r=6 \sin \theta$ describes a circle centred at $(0,3)$ with radius 3.

- Polar to Cartesian

$$
r=\frac{4}{2 \cos \theta-\sin \theta}
$$

is equivalent to $2 r \cos \theta-r \sin \theta=4$

- Cartesian to polar

$$
\begin{array}{rrl}
& x^{2}+(y-3)^{2}=9 \\
\Leftrightarrow & \left(x^{2}+y^{2}\right)-6 y+9=9 \\
\Leftrightarrow & r^{2}-6 r \sin \theta=0 \\
\Leftrightarrow & r=0 \text { or } & r=6 \sin \theta
\end{array}
$$

Therefore $r=6 \sin \theta$ describes a circle centred at $(0,3)$ with radius 3.

- Polar to Cartesian

$$
r=\frac{4}{2 \cos \theta-\sin \theta}
$$

is equivalent to $2 r \cos \theta-r \sin \theta=4$ or $2 x-y=4$. We therefore have the equation of a line

$$
y=2 x-4
$$

MAS115

Symmetry in Polar Coordinates

Tests for Symmetry

(a) About the x-axis

(b) About the y-axis

(c) About the origin

masis Symmetry in Polar Coordinates

Tests for Symmetry

(a) About the x-axis

(b) About the y-axis

(c) About the origin

Symmetry Tests for Polar Graphs

1. Symmetry about the x-axis: If the point (r, θ) lies on the graph, the point $(r,-\theta)$ or $(-r, \pi-\theta)$ lies on the graph
2. Symmetry about the y-axis: If the point (r, θ) lies on the graph, the point $(r, \pi-\theta)$ or $(-r,-\theta)$ lies on the graph
3. Symmetry about the origin: If the point (r, θ) lies on the graph, the point $(-r, \theta)$ or $(r, \theta+\pi)$ lies on the graph

The Slope of a Polar Curve

Given $r=f(\theta)$, compute the slope of the curve:

The Slope of a Polar Curve

Given $r=f(\theta)$, compute the slope of the curve:

- The slope is still $d y / d x$, so think of x and y as given by the parameter θ :

The Slope of a Polar Curve

Prellberg

Given $r=f(\theta)$, compute the slope of the curve:

- The slope is still $d y / d x$, so think of x and y as given by the parameter θ :

$$
\begin{aligned}
& x=f(\theta) \cos \theta \\
& y=f(\theta) \sin \theta
\end{aligned}
$$

MAS115

Prellberg

The Slope of a Polar Curve

Given $r=f(\theta)$, compute the slope of the curve:

- The slope is still $d y / d x$, so think of x and y as given by the parameter θ :

$$
\begin{aligned}
& x=f(\theta) \cos \theta \\
& y=f(\theta) \sin \theta
\end{aligned}
$$

- Therefore

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}
$$

Given $r=f(\theta)$, compute the slope of the curve:

- The slope is still $d y / d x$, so think of x and y as given by the parameter θ :

$$
\begin{aligned}
& x=f(\theta) \cos \theta \\
& y=f(\theta) \sin \theta
\end{aligned}
$$

- Therefore

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}
$$

with

$$
\begin{aligned}
& d x / d \theta=f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \\
& d y / d \theta=f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta
\end{aligned}
$$

MAS115
 Graphing a Polar Curve

Prellberg

Lecture 31
Graph $r=1-\cos \theta$:

Graph $r=1-\cos \theta$:

- Symmetry: $\cos \theta=\cos (-\theta)$

Graphing a Polar Curve

Graph $r=1-\cos \theta$:

- Symmetry: $\cos \theta=\cos (-\theta)$ so both (r, θ) and $(r,-\theta)$ are on the curve:

Graphing a Polar Curve

Graph $r=1-\cos \theta$:

- Symmetry: $\cos \theta=\cos (-\theta)$ so both (r, θ) and $(r,-\theta)$ are on the curve:

The curve is symmetric about the x-axis

MAS115
 Graphing a Polar Curve

Graph $r=1-\cos \theta$:

- Symmetry: $\cos \theta=\cos (-\theta)$ so both (r, θ) and $(r,-\theta)$ are on the curve:

The curve is symmetric about the x-axis

- Monotonicity: $\cos \theta$ is monotonically decreasing on $[0, \pi]$:

MAS115
 Graphing a Polar Curve

Graph $r=1-\cos \theta$:

- Symmetry: $\cos \theta=\cos (-\theta)$ so both (r, θ) and $(r,-\theta)$ are on the curve:

The curve is symmetric about the x-axis

- Monotonicity: $\cos \theta$ is monotonically decreasing on $[0, \pi]$:

$$
\begin{gathered}
\text { As } \theta \text { increases from } 0 \text { to } \pi \\
r=1-\cos \theta \text { increases from } 0 \text { to } 2
\end{gathered}
$$

masi15 Graphing a Polar Curve

Graph $r=1-\cos \theta$:

- Symmetry: $\cos \theta=\cos (-\theta)$ so both (r, θ) and $(r,-\theta)$ are on the curve:

The curve is symmetric about the x-axis

- Monotonicity: $\cos \theta$ is monotonically decreasing on $[0, \pi]$:

$$
\begin{gathered}
\text { As } \theta \text { increases from } 0 \text { to } \pi \\
r=1-\cos \theta \text { increases from } 0 \text { to } 2
\end{gathered}
$$

- A small table of values:

$$
\begin{array}{rlrrrr}
\theta: & 0 & \pi / 3 & \pi / 2 & 2 \pi / 3 & \pi \\
r=1-\cos \theta: & 0 & 1 / 2 & 1 & 3 / 2 & 2
\end{array}
$$

MAS115

Use symmetry and monotonicity, start with table of values

θ	$r=1-\cos \theta$
0	0
$\frac{\pi}{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1
$\frac{2 \pi}{3}$	$\frac{3}{2}$
π	2

MAS115

Use symmetry and monotonicity, start with table of values

θ	$r=1-\cos \theta$
0	0
$\frac{\pi}{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1
$\frac{2 \pi}{3}$	$\frac{3}{2}$
π	2

MAS115

Use symmetry and monotonicity, start with table of values

Find horizontal and vertical tangents to $r=f(\theta)=1-\cos \theta$:

Graphing a Polar Curve

Find horizontal and vertical tangents to $r=f(\theta)=1-\cos \theta$:

- Recall $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}$ with

$$
\begin{aligned}
& d x / d \theta=f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \\
& d y / d \theta=f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta
\end{aligned}
$$

masi15 Graphing a Polar Curve

Find horizontal and vertical tangents to $r=f(\theta)=1-\cos \theta$:

- Recall $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}$ with

$$
\begin{aligned}
& d x / d \theta=f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \\
& d y / d \theta=f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta
\end{aligned}
$$

- Compute

$$
\frac{d y}{d x}=\frac{\sin ^{2} \theta+(1-\cos \theta) \cos \theta}{\sin \theta \cos \theta-(1-\cos \theta) \sin \theta}
$$

masi15 Graphing a Polar Curve

Find horizontal and vertical tangents to $r=f(\theta)=1-\cos \theta$:

- Recall $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}$ with

$$
\begin{aligned}
& d x / d \theta=f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \\
& d y / d \theta=f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta
\end{aligned}
$$

- Compute

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\sin ^{2} \theta+(1-\cos \theta) \cos \theta}{\sin \theta \cos \theta-(1-\cos \theta) \sin \theta} \\
& =\frac{1-\cos \theta}{\sin \theta} \cdot \frac{1+2 \cos \theta}{1-2 \cos \theta}
\end{aligned}
$$

MAS115
 Graphing a Polar Curve

Find horizontal and vertical tangents to $r=f(\theta)=1-\cos \theta$:

- Recall $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}$ with

$$
\begin{aligned}
& d x / d \theta=f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \\
& d y / d \theta=f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta
\end{aligned}
$$

- Compute

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\sin ^{2} \theta+(1-\cos \theta) \cos \theta}{\sin \theta \cos \theta-(1-\cos \theta) \sin \theta} \\
& =\frac{1-\cos \theta}{\sin \theta} \cdot \frac{1+2 \cos \theta}{1-2 \cos \theta}
\end{aligned}
$$

- Horizontal tangents at

$$
\theta=0, \quad \theta= \pm \frac{2}{3} \pi
$$

Graphing a Polar Curve

Find horizontal and vertical tangents to $r=f(\theta)=1-\cos \theta$:

- Recall $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}$ with

$$
\begin{aligned}
& d x / d \theta=f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta \\
& d y / d \theta=f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta
\end{aligned}
$$

- Compute

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\sin ^{2} \theta+(1-\cos \theta) \cos \theta}{\sin \theta \cos \theta-(1-\cos \theta) \sin \theta} \\
& =\frac{1-\cos \theta}{\sin \theta} \cdot \frac{1+2 \cos \theta}{1-2 \cos \theta}
\end{aligned}
$$

- Horizontal tangents at
- Vertical tangents at

$$
\theta=0, \quad \theta= \pm \frac{2}{3} \pi
$$

$$
\theta=\pi, \quad \theta= \pm \frac{1}{3} \pi
$$

The End

