Lattice Path Counting: where Enumerative Combinatorics and Statistical Mechanics meet

Thomas Prellberg

School of Mathematical Sciences, Queen Mary University of London, UK
Genomics, Pattern Avoidance, and Statistical Mechanics
Dagstuhl Seminar, November 4-9, 2018

Topic Outline

(1) Counting
(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface

4 Approximate Counting

- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

Outline

(1) Counting

(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface

4) Approximate Counting

- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

Counting and Language

- Pirahã (Amazon): hói $=$ one/small/less, hoí $=$ two/many/large/more

Counting and Language

- Pirahã (Amazon): hói $=$ one/small/less, hoí = two/many/large/more
- Warlpiri (Australia):
one, two, many

Counting and Language

- Pirahã (Amazon): hói $=$ one/small/less, hoí $=$ two/many/large/more
- Warlpiri (Australia): one, two, many
- Gumulgal (Australia): one, two, two-one, two-two, two-two-one, ...

Counting and Language

- Pirahã (Amazon): hói $=$ one/small/less, hoí = two/many/large/more
- Warlpiri (Australia): one, two, many
- Gumulgal (Australia): one, two, two-one, two-two, two-two-one, ...
- Roman numerals:

I, II, III, IV, V, VI, ..., LXXXIX, $\mathrm{XC}, \mathrm{XCI}, \ldots$

Counting and Language

- Pirahã (Amazon): hói $=$ one/small/less, hoí $=$ two/many/large/more
- Warlpiri (Australia): one, two, many
- Gumulgal (Australia): one, two, two-one, two-two, two-two-one, ...
- Roman numerals:

I, II, III, IV, V, VI, ..., LXXXIX, XC, XCI, ...

- India: zero, decimal system $1,2, \ldots, 9,10,11, \ldots$

Counting and Society

- 20,000 BC: Ishango bone (Congo) tally marks on baboon fibula

Counting and Society

- 20,000 BC: Ishango bone (Congo) tally marks on baboon fibula
- 4000 BC: Sumeria livestock \equiv tokens

Counting and Society

- 20,000 BC: Ishango bone (Congo) tally marks on baboon fibula
- 4000 BC: Sumeria livestock \equiv tokens
- 3000 BC: Egypt
hieroglyph for one million

Counting and Society

- 20,000 BC: Ishango bone (Congo) tally marks on baboon fibula
- 4000 BC: Sumeria livestock \equiv tokens
- 3000 BC: Egypt
hieroglyph for one million

- 500 BC: Pythagoras (Greece) "of all things numbers are the first"

Counting and Society

- 20,000 BC: Ishango bone (Congo) tally marks on baboon fibula
- 4000 BC: Sumeria livestock \equiv tokens
- 3000 BC: Egypt
hieroglyph for one million

- 500 BC: Pythagoras (Greece) "of all things numbers are the first"
- Roman Empire:

Mathematics only for bookkeeping

Counting and Combinatorics

- Combinatorics is the study of finite or countable discrete structures

Counting and Combinatorics

- Combinatorics is the study of finite or countable discrete structures
- Two basic types of questions
- Do there exist structures of a given kind and size?

Counting and Combinatorics

- Combinatorics is the study of finite or countable discrete structures
- Two basic types of questions
- Do there exist structures of a given kind and size?

Given any six members of linkedin.com, does there exist a collection of three of them who are either all connected to each other or don't share any connections?

Counting and Combinatorics

- Combinatorics is the study of finite or countable discrete structures
- Two basic types of questions
- Do there exist structures of a given kind and size?

Given any six members of linkedin.com, does there exist a collection of three of them who are either all connected to each other or don't share any connections? Yes.

Counting and Combinatorics

- Combinatorics is the study of finite or countable discrete structures
- Two basic types of questions
- Do there exist structures of a given kind and size?

Given any six members of linkedin.com, does there exist a collection of three of them who are either all connected to each other or don't share any connections? Yes.

- How many structures of a given kind and size are there?

Counting and Combinatorics

- Combinatorics is the study of finite or countable discrete structures
- Two basic types of questions
- Do there exist structures of a given kind and size?

Given any six members of linkedin.com, does there exist a collection of three of them who are either all connected to each other or don't share any connections? Yes.

- How many structures of a given kind and size are there?

Counting and Combinatorics

- Combinatorics is the study of finite or countable discrete structures
- Two basic types of questions
- Do there exist structures of a given kind and size?

Given any six members of linkedin.com, does there exist a collection of three of them who are either all connected to each other or don't share any connections? Yes.

- How many structures of a given kind and size are there?

There are $2^{15}=32768$ different friends-strangers graphs on six labelled vertices (ignoring labels and change of colour, one gets 78 different graphs)

Counting and Combinatorics

- Combinatorics is the study of finite or countable discrete structures
- Two basic types of questions
- Do there exist structures of a given kind and size?

Given any six members of linkedin.com, does there exist a collection of three of them who are either all connected to each other or don't share any connections? Yes.

- How many structures of a given kind and size are there?

There are $2^{15}=32768$ different friends-strangers graphs on six labelled vertices (ignoring labels and change of colour, one gets 78 different graphs)

- A third question
- Approximately how many structures are there asymptotically?

Outline

(1) Counting
(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface
(4) Approximate Counting
- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

Equilibrium Statistical Mechanics - A Dictionary

- Of interest: average of quantities over "configuration space" Ω_{n} of size n
- Example: N-step lattice paths on the square lattice starting at the origin. For simple random walks $c_{n}=4^{n}$.

Equilibrium Statistical Mechanics - A Dictionary

- Of interest: average of quantities over "configuration space" Ω_{n} of size n
- Example: N-step lattice paths on the square lattice starting at the origin. For simple random walks $c_{n}=4^{n}$.
- Extensive quantities in statistical mechanics grow exponentially in system size n (thermodynamic limit)
- Example: the asymptotic growth of configuration space

$$
S=\lim _{n \rightarrow \infty} \frac{1}{n} \log c_{n}
$$

can be rescaled when needed (permutations, permanents, ...)

Equilibrium Statistical Mechanics - A Dictionary

- Of interest: average of quantities over "configuration space" Ω_{n} of size n
- Example: N-step lattice paths on the square lattice starting at the origin. For simple random walks $c_{n}=4^{n}$.
- Extensive quantities in statistical mechanics grow exponentially in system size n (thermodynamic limit)
- Example: the asymptotic growth of configuration space

$$
S=\lim _{n \rightarrow \infty} \frac{1}{n} \log c_{n}
$$

can be rescaled when needed (permutations, permanents, ...)

- At a finite temperature T, configurations are weighted via their energy. If a configuration ϕ has energy E_{ϕ} then the Boltzmann weight w_{ϕ} at temperature T is $w_{\phi}(T)=\exp \left(-E_{\phi} / k_{B} T\right)$.

Equilibrium Statistical Mechanics - A Dictionary

- Of interest: average of quantities over "configuration space" Ω_{n} of size n
- Example: N-step lattice paths on the square lattice starting at the origin. For simple random walks $c_{n}=4^{n}$.
- Extensive quantities in statistical mechanics grow exponentially in system size n (thermodynamic limit)
- Example: the asymptotic growth of configuration space

$$
S=\lim _{n \rightarrow \infty} \frac{1}{n} \log c_{n}
$$

can be rescaled when needed (permutations, permanents, ...)

- At a finite temperature T, configurations are weighted via their energy. If a configuration ϕ has energy E_{ϕ} then the Boltzmann weight w_{ϕ} at temperature T is $w_{\phi}(T)=\exp \left(-E_{\phi} / k_{B} T\right)$.
- c_{n} gets generalised to the partition function

$$
Z_{n}(T)=\sum_{\phi \in \Omega_{n}} w_{\phi}(T) \quad \text { so that } c_{n}=Z_{n}(T=\infty)
$$

Outline

(1) Counting
(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface
(4) Approximate Counting
- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

Outline

(1) Counting
(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface

4) Approximate Counting

- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

Lattice Paths and Generating Functions

- How many directed lattice paths with n up-steps and n east-steps are there?

Lattice Paths and Generating Functions

- How many directed lattice paths with n up-steps and n east-steps are there?

Lattice Paths and Generating Functions

- How many directed lattice paths with n up-steps and n east-steps are there?

2 paths of length 2, 6 paths of length 4, 20 paths of length $6, \ldots$

Lattice Paths and Generating Functions

- How many directed lattice paths with n up-steps and n east-steps are there?

2 paths of length 2, 6 paths of length 4, 20 paths of length $6, \ldots$

- The number of $2 n$-step paths is $c_{n}=\binom{2 n}{n}$

Lattice Paths and Generating Functions

- How many directed lattice paths with n up-steps and n east-steps are there?

2 paths of length 2, 6 paths of length 4, 20 paths of length $6, \ldots$

- The number of $2 n$-step paths is $c_{n}=\binom{2 n}{n}$
- The generating function $Z(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots$

Lattice Paths and Generating Functions

- How many directed lattice paths with n up-steps and n east-steps are there?

2 paths of length 2, 6 paths of length 4, 20 paths of length $6, \ldots$

- The number of $2 n$-step paths is $c_{n}=\binom{2 n}{n}$
- The generating function $Z(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots$ is

$$
Z(x)=\frac{1}{\sqrt{1-4 x}}
$$

Outline

(1) Counting
(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface
(4) Approximate Counting
- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

Walks on the Triangular Lattice

Walks on the Triangular Lattice

$$
c_{n}=6^{n}
$$

Walks on the Triangular Lattice

$$
c_{n}=6^{n}, \quad Z(x)=1 /(1-6 x)
$$

Lattice Paths and Generating Functions Walks in a Triangle
Lattice Path Models of Polymers
Pulling Polymers off a Surface

Walks in a Triangle

Restrict to a triangular domain

Lattice Paths and Generating Functions Walks in a Triangle
Lattice Path Models of Polymers
Pulling Polymers off a Surface

Counting Walks

Parameters

- Side-length L
- Number of steps n
- Starting point a
- End point b

Counting Walks

Parameters

- Side-length L
- Number of steps n
- Starting point a
- End point b

Number of n-step walks from \mathbf{a} to \mathbf{b} within triangle of side-length L

$$
C_{n, L}^{\mathbf{a}, \mathbf{b}}
$$

Counting Walks

Parameters

- Side-length L
- Number of steps n
- Starting point a
- End point b

Number of n-step walks from \mathbf{a} to \mathbf{b} within triangle of side-length L

$$
c_{n, L}^{\mathbf{a}, \mathbf{b}}
$$

No general closed form known for $c_{n, L}^{\mathbf{a}, \mathbf{b}}$ or associated generating function

$$
Z_{L}^{\mathbf{a}, \mathbf{b}}(t)=\sum_{n} c_{n, L}^{\mathbf{a}, \mathbf{b}} t^{n}
$$

A Special Case

Starting the walks in a corner of the triangle, we find
Theorem (Mortimer, Prellberg, 2015)
The generating function which counts n-step walks in a triangle of side-length L starting at a chosen corner with no restrictions on the endpoint is given by

$$
\frac{\left(1-p^{3}\right)\left(1-p^{1+L}\right)}{(1-p)\left(1-p^{3+L}\right)}
$$

where

$$
p=\frac{1-2 t-\sqrt{(1+2 t)(1-6 t)}}{4 t}
$$

Lattice Paths and Generating Functions Walks in a Triangle
Lattice Path Models of Polymers
Pulling Polymers off a Surface

Bi-Colored Motzkin Paths

Bi-Colored Motzkin Paths

Corollary (Mortimer, Prellberg, 2015)
n-step walks starting in a corner of a triangle of odd side-length $L=2 H+1$ with arbitrary endpoint are in one-to-one correspondence with bi-colored n-step Motzkin paths in a strip of height H.

Bi-Colored Motzkin Paths

Corollary (Mortimer, Prellberg, 2015)

n-step walks starting in a corner of a triangle of odd side-length $L=2 H+1$ with arbitrary endpoint are in one-to-one correspondence with bi-colored n-step Motzkin paths in a strip of height H.

There is only a generating function proof, and no direct mapping is known.

Lattice Paths and Generating Functions

Outline

(1) Counting
(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface

4 Approximate Counting

- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

Lattice Paths and Generating Functions

Lattice Path Models of Polymers

Lattice Path Models of Polymers

Lattice Paths

- Physical space \rightarrow cubic lattice

- Ghost polymer \rightarrow random walk

Lattice Path Models of Polymers

Lattice Paths

- Physical space \rightarrow cubic lattice

- Ghost polymer \rightarrow random walk

Self-Avoiding Walks (SAW)

- Polymer with Excluded Volume \rightarrow self-avoiding random walk

Lattice Path Models of Polymers

Lattice Paths

- Physical space \rightarrow cubic lattice

- Ghost polymer \rightarrow random walk

Self-Avoiding Walks (SAW)

- Polymer with Excluded Volume \rightarrow self-avoiding random walk

Interacting Self-Avoiding Walks (ISAW)

- Quality of solvent \rightarrow interactions
- Model for the collapse of polymers

"Realistic" Lattice Models of Polymers

A self-avoiding walk lattice model of an interacting polymer tethered to a sticky surface under the influence of a pulling force

Counting and Density of States

- Combinatorial question: How many n-step lattice paths are there with m nearest-neighbour interactions, k contacts with the surface, and ending at distance h from the surface?

Counting and Density of States

- Combinatorial question: How many n-step lattice paths are there with m nearest-neighbour interactions, k contacts with the surface, and ending at distance h from the surface?
- Physicists relate this to the Density of States and can extract from this lots of interesting thermodynamic information

Outline

(1) Counting
(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface
(4) Approximate Counting
- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

Pulling Polymers off a Surface

- A partially directed walk model of a polymer tethered to a sticky surface under the influence of a pulling force

Pulling Polymers off a Surface

- A partially directed walk model of a polymer tethered to a sticky surface under the influence of a pulling force

- This model is exactly solvable (Osborn, Prellberg, 2010)

Lattice Paths and Generating Functions Walks in a Triangle
Lattice Path Models of Polymers
Pulling Polymers off a Surface

Varying the Pulling Angle

- Thermal desorption at $T=1 / \log (1+\sqrt{2} / 2) \approx 1.87$

Varying the Pulling Angle

- Thermal desorption at $T=1 / \log (1+\sqrt{2} / 2) \approx 1.87$
- Vertical pulling, $\theta=90^{\circ}$ (left curve):

Increasing F favours desorption

Varying the Pulling Angle

- Thermal desorption at $T=1 / \log (1+\sqrt{2} / 2) \approx 1.87$
- Vertical pulling, $\theta=90^{\circ}$ (left curve):

Increasing F favours desorption

- Horizontal pulling, $\theta=0^{\circ}$ (right curve):

Increasing F disfavours desorption

Varying the Pulling Angle

(a)

(b)

Pulling angle-dependent force microscopy

L. Grebiková, H. Gojzewski, B. D. Kieviet, ${ }^{\text {a] }}$ M. Klein Gunnewiek, and G. J. Vancso ${ }^{\text {b) }}$ Materials Science and Technology of Polymers, MESA+, Institule of Nanotechnology: University of Twente, P.O. Box 217,7500 AE Enschede, The Netherlands
(Received 22 November 2016; accepted 28 February 2017; published online 20 March 2017) In this paper, we describe a method allowing one to perform three-dimensional displacement conrol in force spectroscopy by atomic force microscopy (AFM). Traditionally, AFM force curves are measured in the normal direction of the contacted surface. The method described can be employed to address not only the magnitude of the measured force but also its direction. We demonstrate the techfique using a case study of angle-dependent desorption of a single poly (2-hydroxyethyl methacrylate) (PHEMA) chain from a planar silica surface in an aqueous solution. The chains were end-grafted from the AFM tip in high dilution, enabling single macromolecule pull experiments. Our experiments give evidence of angular dependence of the desorption force of single polymer chains and illustrate the added value of introducing force direction control in AFM. Published by AIP Publishing. (http://dx.doi.org/10.1063/1.4978452]

IV. CONCLUSIONS

We describe in this study the design and implementation of performing directional force spectroscopy experiments by AFM. By modifying the built-in functions of a standard AFM instrument, we were able to control the cantilever trajectory. This approach has been demonstrated by a case study on the angle-dependent desorption of an end-grafted polymer chain. The polymer response to the external force exerted at various pulling angles with respect to the substrate has been addressed. By employing this technique in single molecule force spectroscopy experiments, we obtained experimental evidence for theoretically predicted enhancement of polymer adhesion while decreasing the pulling angle with respect to planar substrate surfaces. ${ }^{18,33}$

Outline

(1) Counting
(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface

4 Approximate Counting

- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

Outline

(1) Counting
(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface

4 Approximate Counting

- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

Simple Random Walk in One Dimension

Galton Board

Simple Random Walk in One Dimension

- Start at origin and go to left or right with equal probability (fair coin-toss)

- 2^{n} possible random walks with n steps
- Endpoint position follows binomial distribution
- Trajectories are directed lattice paths

Simple Random Walk in One Dimension

- Start at origin and go to left or right with equal probability (fair coin-toss)

- 2^{n} possible random walks with n steps
- Endpoint position follows binomial distribution
- Trajectories are directed lattice paths

Model of a directed polymer in two dimensions

Simple Sampling

Simple sampling of simple random walk for $n=50$ steps. For each simulation, 100000 samples were generated.

Simple Sampling

Simple sampling of simple random walk for $n=50$ steps. For each simulation, 100000 samples were generated.

How can we tweak the algorithm to reach the tails?

Pruned and Enriched Sampling

- Smart idea: change sampling rate to achieve uniform sampling

Pruned and Enriched Sampling

- Smart idea: change sampling rate to achieve uniform sampling

Pruning and Enrichment Strategy

- Pruning If sampling rate is too large, remove the configuration probabilistically
- Enrichment If sampling rate is too small, make several copies of the configuration and continue growing each

Pruned and Enriched Sampling

- Uniform sampling with genuinely blind algorithm

Pruned and Enriched Sampling

- Uniform sampling with genuinely blind algorithm

Can be applied to a large class of growth processes

Outline

(1) Counting
(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface

4 Approximate Counting

- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

Simple Sampling of Self-Avoiding Walk

Consider Self-Avoiding Walks (SAW) on the square lattice \mathbb{Z}^{2}

- Simple sampling of SAW works like simple sampling of random walks
- But now walks get removed if they self-intersect

Simple Sampling of Self-Avoiding Walk

Consider Self-Avoiding Walks (SAW) on the square lattice \mathbb{Z}^{2}

- Simple sampling of SAW works like simple sampling of random walks
- But now walks get removed if they self-intersect

Generating SAW with simple sampling is very inefficient

- There are $4^{n} n$-step random walks, but only about $2.638^{n} n$-step SAW

Simple Sampling of Self-Avoiding Walk

Consider Self-Avoiding Walks (SAW) on the square lattice \mathbb{Z}^{2}

- Simple sampling of SAW works like simple sampling of random walks
- But now walks get removed if they self-intersect

Generating SAW with simple sampling is very inefficient

- There are $4^{n} n$-step random walks, but only about $2.638^{n} n$-step SAW
- The probability of successfully generating an n-step SAW decreases exponentially fast

This is called exponential attrition

Algorithm Development

- Rosenbluth Method (Rosenbluth, Rosenbluth, 1956): Only take steps that avoid intersections

Algorithm Development

- Rosenbluth Method (Rosenbluth, Rosenbluth, 1956): Only take steps that avoid intersections
- PERM (Grassberger, 1997):

Add Pruning and Enrichment to Rosenbluth Method

Algorithm Development

- Rosenbluth Method (Rosenbluth, Rosenbluth, 1956): Only take steps that avoid intersections
- PERM (Grassberger, 1997):

Add Pruning and Enrichment to Rosenbluth Method

- FlatPERM (Prellberg, Krawczyk, 2004): Add Uniform Sampling Strategy to PERM

Attrition for Simple Sampling, Rosenbluth Sampling, and PERM

Interacting Self-Avoiding Walks

Consider sampling with respect to an extra parameter, for example the number of nearest-neighbour contacts

An interacting self-avoiding walk on the square lattice with $n=26$ steps and $m=7$ contacts.

Generated samples and estimated number of states for ISAW with 50 steps estimated from 10^{6} flatPERM tours.

ISAW simulations

Prellberg, Krawczyk, 2004

- Square lattice ISAW up to $n=1024$
- One simulation suffices
- 400 orders of magnitude

Outline

(1) Counting
(2) A Crash Course in Statistical Mechanics
(3) Exact Counting

- Lattice Paths and Generating Functions
- Walks in a Triangle
- Lattice Path Models of Polymers
- Pulling Polymers off a Surface

4 Approximate Counting

- Sampling of Simple Random Walks
- Sampling of Self-Avoiding Walks
- Applications

A Pure Mathematics Application

"On the cogrowth of Thompson's F group" Rechnitzer, Elder, Wong (2012)

Figure 3: A plot of the normalised distribution of the number of words $c_{n, \ell}$ of length n and geodesic length ℓ in Thompson's group F. Notice that the peak position is quite stable, indicating that the mean geodesic length grows roughly linearly with word length.

We will proceed along a similar line but using a more powerful-random sampling method based on flat-histogram ideas used in the FlatPERMalgorithm [18, 19]. Each sample word is grown in a similar manner to simple sampling - append one generator at a time chosen uniformly at random. The weight of a word of n symbols is simply 1 , so that the total weight of all possible words at any given length is just 4^{n}. As the word grows we keep track of its geodesic length. We now deviate from simple sampling by "pruning" and "enriching" the words.

The mean geodesic length of the amenable groups studied grow sublinearly, while those of $\mathbb{Z}\} F_{2}$ and Thompson's group are observed to grow linearly. Using simple sampling we estimate that the mean geodesic length of Thompson's group does indeed grow linearly and that the rate of escape is 0.27 ± 0.01.

Indication that Thompson's F group is not amenable ${ }^{1}$

2-Dimensional Density of States

Krawczyk, Owczarek, Prellberg (2004)

- Force-induced desorption of adsorbed polymers
- Relevance: optical tweezers, AFM; related to DNA unzipping
- 3-dim polymer in a half space, one simulation, up to $n=256$

Lattice polymers with two competing interactions

Bedini, Owczarek, Prellberg (2014)

$\omega=0.5$, increasing τ :

Self-attracting polymers in two dimensions with three low-temperature phases

Bedini, Owczarek, Prellberg (2017)

Supercoiling in a lattice polymer

Dagrosa, Owczarek, Prellberg (2017)

A big THANK YOU to all co-authors

A. Bedini, Data Scientist and Business Computational Specialist Curtin University, Perth, Australia
E. Dagrosa, Postdoc

Institut für Physik, Universität Mainz, Germany
J. Krawczyk, Technical Trainer

Saudi Petroleum Services Polytechnic, Dammam, Saudi Arabia
P. R. G. Mortimer, Susquehanna International Group, LLP

London, UK
J. Osborn, Lecturer of Mathematics

University of Newcastle, Australia
A. L. Owczarek, Professor of Mathematics, Deputy Dean University of Melbourne, Australia
A. Rechnitzer, Professor of Mathematics University of British Columbia, Vancouver, Cananda

