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Adsorption of two-dimensional polymers with two- and three-body self-interactions
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Using extensive Monte Carlo simulations, we investigate the surface adsorption of self-avoiding trails on the
triangular lattice with two- and three-body on-site monomer-monomer interactions. In the parameter space of
two-body, three-body, and surface interaction strengths, the phase diagram displays four phases: swollen (coil),
globule, crystal, and adsorbed. For small values of the surface interaction, we confirm the presence of swollen,
globule, and crystal bulk phases. For sufficiently large values of the surface interaction, the system is in an
adsorbed state, and the adsorption transition can be continuous or discontinuous, depending on the bulk phase.
As such, the phase diagram contains a rich phase structure with transition surfaces that meet in multicritical lines
joining in a single special multicritical point. The adsorbed phase displays two distinct regions with different
characteristics, dominated by either single- or double-layer adsorbed ground states. Interestingly, we find that
there is no finite-temperature phase transition between these two regions though rather a smooth crossover.
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I. INTRODUCTION

Understanding the behavior of self-interacting single poly-
mer chains in a solvent is of fundamental interest from
both the theoretical and experimental point of view [1,2].
In general, one can find a rich phase structure. In a good
solvent, a polymer exists in a swollen globule state, whereas
in a bad solvent the polymer collapses into a partially dense
amorphous globule or presents in a fully dense crystal-like
structure.

The study of a variety of lattice models of polymers has
played a fundamental role in elucidating these phases and
phase transitions between them. For example, the coil-globule
transition between a swollen coil and a collapsed globule
at the so-called θ point has been analyzed in both two and
three dimensions [3–5], with theoretically predicted critical
exponents [6–8] associated with the transition confirmed by
simulations and experiment.

More generally, interacting self-avoiding walks and trails
with competing two-body and three-body interactions give
rise to phase diagrams, which, in addition to the swollen
phase, show both collapsed globule and dense crystal-like
phases, with all three phases meeting at a multicritical point
[9–11]. A schematic phase diagram is shown in Fig. 1.
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Adsorption of a polymer chain onto a surface is another
fundamental problem in polymer physics [12–20]. If a poly-
mer is tethered with one end to a sticky surface, then increas-
ing the strength of the surface attraction induces an adsorption
transition from a desorbed bulk state to an adsorbed state in
which the polymer is bound to the surface. If the polymer
is in a swollen bulk phase, then one speaks of a “normal”
surface transition, whereas if the polymer in bulk is in the
critical θ -state, one speaks of a “special” surface transition,
each of which is associated with its own set of critical surface
exponents [21]. If the polymer adsorbs from a collapsed
coil, one finds a surface-attached globule (which is absent in
two-dimensional models, in which the adsorbing surface is
modeled by a line).

Recently, there has been renewed interest in the polymer
adsorption transition due to the fact that numerical studies
pointed at possible nonuniversal behavior of the normal ad-
sorption transition [22–25]. Of interest here is the fact that
these works show that the determination of these exponents is
rather subtle due to the presence of strong finite-size effects,
despite the fact that the phases themselves could be identified
in a robust manner.

In this paper, we consider the adsorption transition of
a polymer chain with both two-body and three-body inter-
actions. The lattice model considered here is one of self-
avoiding trails with on-site interactions on the triangular lat-
tice, which has been studied previously [9]. We now study this
model in a half-plane with the trails restricted to start at the
origin, and adsorption mediated by on-site attractive interac-
tions at vertices in the boundary line. In addition to the three
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FIG. 1. Schematic phase diagram for a single polymer chain in
a solvent with two-body and three-body interactions, showing the
presence of coil, globule, and fully dense phases. The coil-globule
transition is critical, whereas the coil-dense transition is first-order.
In two dimensions, the globule-dense transition is expected to be
continuous.

bulk phases, we find an adsorbed phase. All phases meet each
other pairwise at transition surfaces, which meet each other
in multicritical lines joining in a single special multicritical
point. The analysis is made somewhat more difficult by the
fact that the adsorbed phase shows two distinct regions with
different characteristics, dominated by either single or double
layer adsorbed ground states.

We point out that an analogous scenario has been analyzed
using the bond-fluctuation model, which can be seen as a
self-avoiding lattice path model in which step lengths different
from unity are allowed [26], with a certain set of short-range
interactions added. The interplay of interaction and adsorption
in such a model has been studied in two [27] and three [28]
dimensions.

This paper is organized as follows. In Sec. II we define the
model and the quantities used to investigate its thermodynam-
ics properties. Some details on the Monte Carlo methods and
simulations are given in Sec. III. Sections IV and V present
results, respectively, for the boundary planes and for slices of
the three-dimensional parameter space. A summary of the full
phase diagram is presented in Sec. VI.

II. MODEL AND QUANTITIES OF INTEREST

A self-avoiding trail (SAT) is defined as a path on a regular
lattice, composed of a finite collection of adjacent vertices on
the sites of the lattice that are linked by steps along the edges
of the lattice, with the restriction that all edges have to be
unique. We identify the vertices of this path as monomers and
the edges as a sequence of bonds connecting such monomers,
in a way that no closed loop is formed. Thereby, the polymer
excluded volume interaction is introduced in this model by
the restriction of one bond per edge, while more than one
monomer can be placed at the same site. In a lattice of

FIG. 2. Illustration of a self-avoiding trail with n = 22 steps on
the triangular lattice. The solid black circle denotes the origin where
the trail is tethered. The Boltzmann weights associated with different
site configurations are also indicated.

coordination number q, the maximal number of monomers at
one site is �q/2�.

Here we are interested in investigating transitions among
bulk and adsorbed phases of polymers modeled as self-
attracting SATs defined on the half-plane consisting of a
triangular lattice limited by a horizontal surface (see Fig. 2).
As the triangular lattice has coordination number q = 6, bulk
sites can be visited by up to three monomers. The coordination
number of sites on the surface is 4, so surface sites can have
at most two monomers. Self-attraction is included in the SATs
by associating energies −ε2 � 0 to doubly visited (regardless
they are in surface or bulk) and −ε3 � 0 to triply visited
sites. Moreover, a polymer-surface interaction is introduced
by assigning an energy −εs � 0 to each monomer lying on
the surface. A configuration for this system is illustrated in
Fig. 2. The trail is tethered to the origin, which is located on
the surface.

To write down the partition function of the system, we
associate Boltzmann weights ω2 = eβε2 and ω3 = eβε3 to each
doubly and triply visited site, respectively, and κ = eβεs to
each monomer on the surface, with β = 1/(kBT ), where kB is
the Boltzmann constant and T the temperature. The partition
function is then given by

Zn(ω2, ω3, κ ) =
∑

m2,m3,ms

C(n)
{m2,m3,ms}ω

m2
2 ω

m3
3 κms , (1)

where C(n)
{m2,m3,ms} is the number of n-step lattice trails with m2

(m3) doubly (triply) visited sites and ms monomers on the
surface. The expected value of any thermodynamic quantity
Q is then defined by the average

〈Q〉(ω2, ω3, κ ) = 1

Zn

∑
ψn

ω
m2(ψn )
2 ω

m3(ψn )
3 κms (ψn )Q(ψn), (2)

where the sum runs over all n-step trails ψn. We are partic-
ularly interested in the energy contribution per step e(n)

j for
doubly, triply, and surface contacts:

e(n)
j = 〈mj〉

n
= 1

nZn

∑
m2,m3,ms

mjC
(n)
{m2,m3,ms}ω

m2
2 ω

m3
3 κms , (3)

where j = 2, 3, s.
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A key quantity to identify possible phase transitions is the
fluctuation c(n)

j of these energy contributions:

c(n)
j (ω2, ω3, κ ) =

〈
m2

j

〉 − 〈mj〉2

n
. (4)

Close to a continuous bulk transition the fluctuations c(n)
2

and c(n)
3 of doubly and triply visited sites, respectively, are

expected to follow the scaling law

c(n)
i ∼ n2φb−1h(τnφb ), (5)

where φb is the crossover exponent related to bulk transitions,
τ ≡ T − Tc is the temperature relative to the bulk transition
temperature Tc, and h(·) is a scaling function. Scaling around
the bulk transition is discussed in [2], see also [3,29]. Further
analysis can be found in [30].

The scaling theory around the adsorption transition was
developed in [31]. For an adsorption transition, the internal
surface energy e(n)

s is the order parameter. Close to the ad-
sorption point the surface energy is expected to behave as

e(n)
s ∼ nφs−1 f (τn1/δ ), (6)

where τ ≡ T − Ta is the temperature relative to the adsorption
temperature Ta, φs is a critical exponent, 1/δ is the crossover
exponent associated with the adsorption transition, and f (·) is
a scaling function.

To analyze the phase transitions, we need to introduce
several quantities. The exponent 1/δ can be obtained from the
quantity

�n =
〈
m2

s

〉 − 〈ms〉2

〈ms〉 , (7)

whose maximum in curves of �n as function of T behaves as

�n,max ∼ n1/δ. (8)

Although we will not be concerned with a careful study
of critical exponents here, in some cases estimates for such
exponents are very important to locate the transition points. In
particular, the crossover exponents φb and 1/δ are crucial if
we want to determine Tx,∞ from finite-size estimates Tx,n, for
x = c or a, since

Tx,n 	 Tx,∞ + n−ψ, (9)

where ψ is equal to φb (when x = c) or 1/δ (when x = a).
Some metric quantities, such as the mean squared end-to-

end distance, R2
n, are also important in the study of both bulk

and surface transitions. For our simulations we created a tri-
angular lattice by augmenting a square lattice with diagonals,
and a simple linear transform implies that the parallel and
perpendicular components of R2

n with respect to the surface
are given by

R2
⊥,n(ω2, ω3, κ ) = 3

4

〈
y2

n

〉
, (10)

R2
‖,n(ω2, ω3, κ ) = 〈

x2
n

〉 + 1
4

〈
y2

n

〉 + 〈xnyn〉. (11)

Close to the adsorption such quantities are expected to follow

R2
⊥/‖,n ∼ n2ν⊥/‖g(τn1/δ ), (12)

where g(·) is a scaling function and ν⊥/‖ are the Flory expo-
nents. Clearly the scaling of R2

n = R2
⊥,n + R2

‖,n is dominated

by the scaling of the larger quantity on the right-hand side,
and thus has an associated Flory exponent ν = max(ν⊥, ν‖).
In nonadsorbed (bulk) phases, such exponents are equal (i.e.,
ν‖ = ν⊥) in the thermodynamic limit, but in finite systems
one finds effective exponent estimates ν⊥/‖,n for which ν‖,n <

ν⊥,n. In adsorbed phases, on the other hand, the trails be-
have as quasi-one-dimensional walks, so that ν‖,n → 1 and
ν⊥,n → 0. Therefore, in finite trails these exponents cross at
some temperature Ta,n, located in between the nonadsorbed
and adsorbed phases. These crossing temperatures can thus
be used as a finite-size estimate of the adsorption transition
temperature.

We can also use the exponent ν to locate bulk transitions
such as the coil-globule transition. In two dimensions, in the
coil phase ν assumes the value of 3/4 [32], while in the
globule phase a value ν = 1/2 [32] is expected. For finite
systems, however, we have that νcoil,n → 3/4 from below and
νglobule,n → 1/2 from above as the length n increases, so that
curves of νn against T for different values of n cross at some
intermediate temperature, which can be taken as an estimate
of Tc,n. At criticality, we expect to find ν = 4/7 [7]. In a
similar fashion, we can locate the collapse transition by using
the scaling of the partition function

Zn ∼ μnnγ−1, (13)

where μ is the connective constant and γ the entropic expo-
nent. Similarly to ν, curves of γ × T for different lengths
n should cross each other in between the coil and globule
phases, giving also estimates of Tc,n.

III. NUMERICAL SIMULATIONS

To build up the full phase diagram of the model for a broad
range of parameters, we sample SATs with the flatPERM
algorithm [33]. Similarly to the pruned-enriched Rosenbluth
method (PERM) [34], flatPERM is an improvement of the
classical Rosenbluth algorithm. In both flatPERM and PERM,
a SAT is stochastically grown with pruning and enrichment
strategies intended to prevent its attrition and the appearance
of rare configurations with small or extremely large statistical
weights. In the flatPERM, the pruning and enrichment pro-
cesses are implemented independently of the thermodynamic
parameters of the system, so that the method gives us an
estimate of the density of states C(n)

{m2,m3,ms}. PERM, on the
other hand, gives us an estimate of the partition function Zn

for a given set of parameters.
The dimensionality of the density of states (i.e., the number

of energy parameters in the model, which is three here) is the
main factor limiting the trails’ sizes studied with flatPERM.
For instance, by not fixing any of the model parameters (ω2,
ω3, and κ), in principle we can numerically obtain the full
density of states and from this the entire thermodynamic
behavior of the model. It turns out, however, that with this
three-parameter approach we are not able to obtain accurate
estimates of C(n)

{m2,m3,ms} for lengths larger than n ≈ 64 steps in
a reasonable amount of time. We can overcome this limitation
by fixing one of the parameters and running a two-parameter
flatPERM simulation for several slices of the full parameter
space. In the following, we will use this strategy to build up
the finite-size phase diagram of the model for trails with up
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to n = 128 steps. To extrapolate from these relatively short
finite-size results to the phase diagram in the thermodynamic
limit, we perform one-parameter flatPERM simulations (by
keeping two parameters fixed) for lengths up to n = 1024 for
values of particular interest. We also ran PERM simulations
for n � 4096 with all parameters fixed. In all cases, results
from averages of at least of 109 trails are presented.

IV. RESULTS FOR THE BOUNDARY PLANES

As implicit in the model definition above, we are interested
here in investigating only the most physically interesting
situation where all interactions are attractive. This means that
we will explore the three-parameter space (ω2, ω3, κ ) where
the three Boltzmann weights are larger than or equal 1. To
begin, it is interesting to analyze the three planes forming
the boundary of such a space. Namely, the planes (ω2, ω3, 1),
(1, ω3, κ ), and (ω2, 1, κ ). These planes correspond to the
absence of surface, two-body, and three-body interactions,
respectively.

A. Plane (ω2, ω3, 1)

First we investigate the case where the surface is inert, that
is, it does not interact with the polymer. This should be di-
rectly comparable to the bulk case previously studied without
a surface [9]. To determine the thermodynamic behavior of
this plane, we analyze the density of states

∑
ms

C{m2,m3,ms}
obtained from a two-parameter flatPERM simulation at κ = 1
for n = 128. We calculate the covariance matrix[ 〈

m2
2

〉 − 〈m2〉2 〈m2m3〉 − 〈m2〉〈m3〉
〈m3m2〉 − 〈m3〉〈m2〉

〈
m2

3

〉 − 〈m3〉2

]
, (14)

whose maximum eigenvalue λ is a measure of the fluctuations,
which can be plotted against ω2 and ω3 as a density plot.
In general, local maxima in such fluctuation maps indicate
the possible existence of phase boundaries there, so that we
can associate lines of suitably defined maxima with pseudo-
transition lines, for the finite system. Then, by considering
other quantities such as the distributions of monomer contacts,
we can identify the phases present in each region of the
fluctuation map, and also whether the pseudotransition lines
can be associated with discontinuous or continuous phase
transitions. This method allows us to build a “finite-size phase
diagram,” which, in most cases, captures the main features
of the actual phase diagram in the thermodynamic limit.
We caution that this method does not necessarily pick up
higher-order phase transitions and would also identify smooth
crossovers as transitions. Hence scaling in length needs to
be performed to conclusively identify the presence of phase
transitions.

The fluctuation map along with approximate transition
lines (i.e., the finite-size phase diagram) for the plane
(ω2, ω3, 1) is shown in Fig. 3. Distributions of doubly and
triply visited sites [not shown] reveal, for small values of ω2

and ω3, the presence of configurations typically dominated
by a high number of singly visited sites, characteristic of the
swollen coil phase. In the region of small ω3 and large ω2, we
find configurations with a large number of doubly visited sites,
which may be identified as the trails’ collapsed globule phase.

FIG. 3. Fluctuation map for the plane (ω2, ω3, 1). The lighter
(darker) colors indicate regions of larger (smaller) fluctuations. The
lower (higher) solid lines are approximations for the continuous
coil-globule and crystal-globule transition lines, while the dashed
line is the discontinuous coil-crystal transition line.

Conversely, for small ω2 and large ω3 the trails are dominated
by triply visited sites. In this region the configurations are
maximally dense, so that we will refer to this phase as a crystal
phase [9]. (More correctly, one should think of this phase as
crystal-like, as it has a nonvanishing entropy.)

Along the line of maximal fluctuation separating the coil-
globule and globule-crystal phases the distributions have a
single peak, indicating the existence of continuous transitions
there. Between the coil and crystal phases, on the other hand,
the distributions of triply visited sites are double-peaked,
suggesting that the coil-crystal transition is discontinuous. It is
important to remark that it is difficult to accurately determine
the transition lines when the regions of maximal fluctuation
separating different phases become close to each other. For
instance, in Fig. 3, we can identify only a region where the
coil-crystal line change to a globule-crystal one and due to
the proximity of this region with the coil-globule line, it
is reasonable to infer that exists a multicritical point there,
where the three lines meets. As prefigured above, such phase
behavior is very similar to the one reported in [9], for the case
where the surface is absent, where indeed such lines meet at a
multicritical point. This is quite expected since the presence
of an inert surface should not change the thermodynamic
behavior of such systems.

To verify the reliability of these results for small trails (with
n = 128 steps), we perform a finite-size analysis considering
trails with lengths up to n = 1024. The bulk transitions are
investigated, in most cases, through the fluctuations c j in the
number of doubly ( j = 2) and triply ( j = 3) visited sites. As
an example, curves of c3 versus ω3 are depicted in Fig. 4(a),
for ω2 = 1 and different lengths. From the maximum in such
curves, c(n)

3,max, and the scaling behavior from Eq. (5), we
estimate the crossover exponent φb, which is slightly larger
than 1 in this case, consistently with the strong increase

062504-4



ADSORPTION OF TWO-DIMENSIONAL POLYMERS WITH TWO- … PHYSICAL REVIEW E 100, 062504 (2019)

7 8 9 10 11 12 13
ω3

0

2

4

6

8

c 3

128
256
512
1024

0 0.001 0.002 0.003 0.004

1/n

6.5

7

7.5

8

8.5

9

ω
3.

n

n(a)

1 2 3 4 5
ω2

0.4

0.5

0.6

0.7

0.8

ν n

ω2 = 3.12(8)
(b)

FIG. 4. (a) Fluctuation in the number of triply visited sites c3

versus ω3, for ω2 = κ = 1 and different lengths. The open black
circles indicate the maximum of each curve. In the insert the values of
ω3,n at the maxima are plotted against 1/n. The dashed line is a linear
fit used in the extrapolation. (b) Effective exponents νn as function
of ω2, for ω3 = κ = 1 and several lengths. The dashed vertical line
indicates the asymptotic value estimated from the crossing points.

of fluctuations observed in Fig. 4(a). Then we identify the
values of ω3 at each maximum as the finite-size transition
parameter and by assuming that they follow Eq. (9), with the
φb just estimated, we extrapolate such values to obtain the
transition point in the thermodynamic limit [see the insertion
in Fig. 4(a)]. For ω2 = 1, this yields ω3 = 6.91(5), which is on
the locus of the coil-crystal transition. Similar to the findings
for n = 128 around the transition point the distribution of the
number of triply visited sites still exhibits a bimodal behavior
for the long trails, which together with the large φb exponent
indicates that such transition is most likely discontinuous.

By increasing ω2 one still finds a very similar behavior
until ω2 � 5

3 , confirming the existence of a line of discontin-
uous coil-crystal transition in the phase diagram (see Fig. 5).
Exactly at ω2 = 5

3 , we observe a continuous transition at ω3 =
8.37(4). All these results are consistent with those reported by
Doukas et al. [9], where a discontinuous coil-crystal transition
ending at a multicritical point located at (ω2, ω3) = ( 5

3 , 25
3 )

was found.

1 1.5 2 2.5 3 3.5 4
ω2

2

4

6

8

10

ω
3

Coil

Globule

Crystal

FIG. 5. Phase diagram for the plane (ω2, ω3, 1). The blue circles
indicate the continuous coil-globule transition, the magenta stars
the continuous globule-crystal transition, and the cyan triangles the
discontinuous coil-crystal transition. The red square is a multicritical
point. In all cases the lines are interpolations.

From Fig. 3 and also from the results in Doukas et al. [9],
we expect to find a coil-globule transition for (relatively) small
ω3. Following a procedure similar to the one above for the
coil-crystal transition, the exponent φb was estimated from
the scaling behavior of c(n)

2,max. For example, for ω3 = 1, one
obtains φb = 0.53(4), which is a bit larger than the value
for the θ class in two dimensions: φb,θ = 3/7 [7]. However,
as extensively reported elsewhere [35–37], estimates of φb

from the bulk fluctuations are usually hampered by strong
finite-size effects. For instance, by extrapolating the finite-
size transition points, ω2,n, obtained from the maximum of
c(n)

2 curves for ω3 = 1 using φb,θ , as done in Doukas et al.
[9], we find ω2 ≈ 2.6 in agreement with the value found in
[9]. However, curves of ω2,n versus n−φb do not display a
good linear behavior neither for φb = φb,θ nor for φb = 0.53,
indicating that such estimate of ω2 is not so reliable. Other
evidence of this is the fact that if one uses the maximum in
the fluctuations in the number of trimers, instead of dimers
[that is, c(n)

3 rather than c(n)
2 ] to determine ω2,n, an extrapolated

value ω2 � 3 is obtained (for ω3 = 1).
To obtain a more accurate estimate of the location of the

coil-globule transition, we study the crossing of curves of ef-
fective exponents νn and γn versus the appropriate parameter.
Fig. 4(b) shows an example of this for ω3 = 1, where one sees
that curves for a broad range of lengths cross each other in
a narrow interval of ω2, demonstrating that finite-size effects
are very small in this measure. In fact, by using the crossing
points for pairs of successive lengths as estimates of ω2,n, one
observes only a mild dependence with n. Extrapolating such
values using Eq. (9), with the exponent φb,θ , we obtain ω2 =
3.12(8). A very similar value is obtained from an analysis of
the crossing points of effective entropic γ exponents, where
finite-size corrections are also weak. The same scenario dis-
cussed here for ω3 = 1 is found for larger values of ω3, along
the entire coil-globule transition line. Since the results coming
from the effective exponents are more accurate than those for
c(n)

2 and somewhat agree with those from c(n)
3 , we use them
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FIG. 6. Fluctuation map for the plane (1, ω3, κ ). The lighter
(darker) colors indicate regions of larger (smaller) fluctuations. The
solid (black) line is the continuous coil-adsorbed line, while the
slanted (indigo) and vertical (blue) dashed lines are the discontinuous
crystal-adsorbed and coil-crystal transition lines, respectively.

to determine the correct coil-globule transition line, which
is shown in Fig. 5. We notice that the location of this line
differs considerably from the one reported in Doukas et al. [9].
Regardless of the numerical difference, both line estimates
end at the same multicritical point, limiting similar regions
of the phase diagram. Moreover, our analysis of exponents
confirms the claim in [9] that this is a tricritical θ line, since
the values of ν and γ at the crossing points are found to be
reasonably close to the θ exponents.

Finally, for large values of ω3 we find a continuous crystal-
globule transition line [see Fig. 5], which was determined
following the same procedure employed above using the
maxima of fluctuations. We notice that, similarly to the coil-
crystal transition, here results from c(n)

2 and c(n)
3 are consistent.

However, once again the locus of our transition line is shifted
from that reported in [9], resulting from differing finite-size
analyses. Importantly, similar to the phase diagram from [9]
our line seems to start at the multicritical point and extends to
large values of ω, as also suggested by the fluctuation map for
n = 128. Actually, despite their quantitative differences, the
entire “finite-size diagram” from the fluctuation map in Fig. 3
is consistent with the phase diagram given here in Fig. 5.

B. Plane (1, ω3, κ)

Now we investigate the case where the two-body
monomer-monomer interaction is absent, so that ω2 = 1.
Similar to the plane (ω2, ω3, 1), we will start analyzing the
properties of the fluctuation map and the respective finite-
size phase diagram, for n = 128. This is shown in Fig. 6,
where one clearly sees three regions separated by stripes of
large fluctuations. The distributions of number of monomers
reveal that such regions are associated with the phases: coil
(for small κ and ω3), crystal (for small κ and large ω3),

2 4 6 8 10
ω3

1

1.5

2

2.5

3

3.5

κ

Coil

Crystal

Adsorbed

FIG. 7. Phase diagram for the plane (1, ω3, κ ). The cyan trian-
gles indicate the discontinuous coil-crystal transition, the indigo cir-
cles the discontinuous crystal-adsorbed transition, and the black stars
the continuous coil-adsorbed transition. The red circle represents the
critical-end-point. All lines are guide-to-eye.

and adsorbed (for large κ). This last one is characterized
by a high number of contacts with surface. An analysis of
the modality of the distribution for the number of trimers
points out that the coil-crystal and crystal-adsorbed phases
are separated by discontinuous transitions, while a continuous
transition line seems to exist between coil and adsorbed
phases. As it is well known [14], when the strength of the
polymer-surface interaction is not so large, the bulk transitions
should not be affected by such interaction. This means that
the discontinuous coil-crystal transition is expected to happen
at a straight line parallel to the κ axis in the (κ, ω3) space.
This important observation facilitates the determination of the
phase boundaries in the finite-size diagram. The maxima of
fluctuations in Fig. 6 suggest that the three transition lines
meet at single point, which turns out to be a critical end point
(CEP).

Let us now explore the phase behavior in the thermo-
dynamic limit. To determine and confirm the existence of
the (bulk) coil-crystal transition line, we follow the same
procedures described in the previous subsection. This yields
an approximately vertical (κ-independent) line in the phase
diagram, located at ω3 ≈ 6.93 (see Fig. 7). This coil-crystal
coexistence line ends at κ ≈ 2.08, above which it gives place
to a crystal-adsorbed discontinuous transition. The crystal-
adsorbed coexistence line, which was determined in the same
way of the coil-crystal one, increases monotonically with ω3,
as seen in Fig. 7.

To analyze the (presumed continuous) coil-adsorbed transi-
tion, one starts calculating �n [Eq. (7)] and using the maxima
in their curves to estimate the crossover exponent 1/δ from
the scaling relation 8. We always find 1/δ ≈ 1/2 along this
line, in agreement with the expected value for the adsorption
transition in two dimensions [38]. Then, we use the position
of the maxima of �n as the finite-size transition estimate κn

and extrapolate them according to Eq. (9) with 1/δ = 1/2. An
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FIG. 8. (a) �n for different lengths as function of κ , for ω2 =
ω3 = 1. The circles indicate the maximum in each curve. The inser-
tion shows the values of κn at the maxima against n−1/2. The dashed
line is a linear fit used in extrapolation. (b) Effective Flory exponents
ν‖,n (dashed lines) and ν⊥,n (solid lines) versus of κ , for ω2 = 1 and
ω3 = 2 and several lengths.

example of this is shown in Fig. 8(a), for ω3 = ω2 = 1, for
which one obtains κ = 2.113(5).

The other accurate way of locating the adsorption transition
is through the crossing of the Flory exponents ν‖ and ν⊥ [24].
Figure 8(b) presents an example for ω3 = 2. The crossing
points for different lengths serve also as good estimates of
κn and their extrapolation [with Eq. (9) and 1/δ = 1/2] yields
an estimate for the thermodynamic value for the adsorption
point. Though this method returns results similar to those from
fluctuations, it has weaker finite-size effects, being so more
reliable to determine the adsorption transition line. Such a line
is also depicted in the phase diagram shown in Fig. 7, where
one sees that it ends at the point where the coexistence lines
meet, confirming the existence of a CEP in the diagram at
(ω3, κ ) ≈ (6.93, 2.08), as suggested by the finite-size fluctu-
ation map.

C. Plane (ω2, 1, κ)

Next we discuss the case where trimers at a given site do
not interact, so ω3 = 1. The fluctuation map and the finite-size

FIG. 9. (a) Fluctuation map for the plane (ω2, 1, κ ). The vertical
blue line indicates the coil-globule transition. The approximately
horizontal line to the left (right) of the coil globule transition is
the black (green) line being the coil-adsorbed (globule-adsorbed)
transition line. The transitions in all these lines seem to be con-
tinuous. While the adsorbed phase is a single phase (there are no
finite temperature phase transitions) it has two regions where the
ground state differs. Illustrations of the two different ground state
configurations are shown in (b) for the Ad1 region and (c) Ad2 region.

transition lines are displayed in Fig. 9(a). Using the same
methodology previously discussed, we find for small values
of κ indications of a continuous coil-globule transition. For
large values of κ one has signatures of two adsorbed regions.
The ordinary adsorbed region (characterized, in the ground
state, by a single line of monomers lying on the surface [see
Fig. 9(b)]) is found for small ω2. For large ω2, on the other
hand, we observe an adsorbed region which, in the ground
state, is featured by a bilayer of doubly visited sites, as illus-
trated in Fig. 9(c). Hereafter, we will refer to these monolayer
and bilayer regions as Ad1 and Ad2 regions, respectively.
Importantly below our analysis indicates that there are no
finite-temperature transitions between them, so they are not
thermodynamically stably different phases.

Our finite-size analysis indicates that both bulk (coil and
globule) phases adsorb through a continuous transition. While
the globule adsorbs to the Ad2 region, the coil phase adsorbs
to either an Ad1 or Ad2 region, depending on the value of ω2.
The globule adsorption to the Ad2 region can be understood,
from an energetic “cost” point of view since both feature a rel-
atively large proportion of doubly visited sites. By locating the
phase boundaries in the finite-size phase diagram, we found
indications of a possible multicritical point located where all
the three continuous lines, coil-globule, coil-adsorbed, and
globule-adsorbed meet.

In the fluctuation map, we see a clear region with large
fluctuation between the regions Ad1 and Ad2, suggesting
the possible existence of an Ad1-Ad2 transition. As already
remarked, however, from the finite behavior alone we can-
not determine whether this is a phase transition or simply
a smooth crossover. To check this, we performed PERM
calculations for trails with up to n = 4096 steps, for several
values of κ and ω2 = 2.4. We chose this value of ω2 since here
the coil adsorbs to an Ad2 region at the transition. Moreover,
for very large values of κ the adsorbed phase becomes Ad1.
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FIG. 10. (a) �n as function of κ for ω3 = 1, ω2 = 2.4, and several
lengths. (b) Fluctuation in the number of doubly visited sites c(n)

2

versus κ for the same parameters as in (a).

Figures 10(a) and 10(b) present �n and c(n)
2 , respectively,

from such simulations, verifying this scenario. There is a
single peak in �n around κ ≈ 2, where the coil-adsorbed
transition is expected. There is no indication of an Ad1-Ad2

transition, but rather evidence for a smooth crossover.
From a physical point of view, one can understand the

two regions simply as two one-dimensional layers, and short-
range interactions in one-dimensional systems are not able to
induce any finite-temperature phase transition, so that there
can only be a smooth crossover between these regions.

Therefore, by using the same methods employed in pre-
vious subsections, we obtain the phase diagram depicted in
Fig. 11. Once again, it is consistent with our findings from the
fluctuation map, with continuous coil-globule, coil-adsorbed,
and globule-adsorbed transition lines. Similarly to the coil-
crystal transition found in the plane (1, ω3, κ ), an approxi-
mately vertical (κ-independent) straight line is found separat-
ing the coil and the globule phases, as expected. This line,
located at ω2 ≈ 3.2, starts at κ = 1 and ends at a multicritical
point located at κ = 1.96(2), where it meets the coil-adsorbed
and globule-adsorbed lines. It is interesting to note in Fig. 11
that the globule-adsorbed line appears for lower values of κ

than those at the crystal-adsorbed line (see Fig. 7). This shows
that trails in the globule phase adsorb easier than those in the

1 2 3 4 5
ω2

1

1.5

2

2.5

3

κ

Coil Globule

Adsorbed

FIG. 11. Phase diagram for the plane (ω2, 1, κ ). The black stars
indicate the continuous coil-adsorbed transition, the blue circles the
θ -like coil-globule transition, and the green diamonds the continuous
globule-adsorbed transition. The multicritical point is denoted by the
red circle. All lines are guide-to-eye.

crystal phase. One way to understand this is that due to the
presence of the Ad2 region in the plane (ω2, 1, κ ) the globule
phase adsorbs to a state in which the trails can retain their
large number of doubly visited sites.

V. THREE-PARAMETER MODEL

To get some insight on the phase behavior in the full three-
parameter space, it is instructive to begin by synthesizing the
information from the three boundary planes discussed in the
previous section. By simply putting these together one finds
a picture as depicted in Fig. 12, which indicates the regions
where each of the four thermodynamic phases (coil, globule,

FIG. 12. Summary of the phases diagrams for the three bound-
ary planes of three parameter space plotted together. The blue
squares are the coil-globule transition lines estimated here. The open
cyan squares are the points of discontinuous coil-crystal transitions,
while the open green triangles the discontinuous crystal-adsorbed
transition. The black circles denote the continuous coil-adsorbed
transitions and the dark-green triangles the critical globule-adsorbed
transition. The magenta diamonds indicates the continuous globule-
crystal transition. The red filled circles represent the CEP and the two
multicritical points.
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FIG. 13. Fluctuation maps in spaces (ω2, ω3, 2) and (ω2, ω3, 3)
in (a) and (b), respectively, with transition lines indicated. In both
panels solid and dashed lines indicate the presence of unimodal and
bimodal energy distributions near the transition, respectively.

crystal, and the adsorbed) found above appears in the full
phase space and how they are separated. Of course one is
assuming no new phases appear. So for instance, the con-
tinuous coil-adsorbed transition lines in the planes (κ, ω2, 1)
and (κ, 1, ω3) strongly suggest that a critical surface exists
separating these phases. Similarly, the tricritical coil-globule
lines in the planes (κ, ω2, 1) and (ω2, ω3, 1) indicate that
such phases are separated by a tricritical (possibly θ ) surface.
Moreover, the discontinuous transition lines between the coil
and crystal phases [in the planes (κ, 1, ω3) and (ω2, ω3, 1)]
provide strong evidence on the existence of a coil-crystal
coexistence surface.

As remarked above the full three-parameter flatPERM sim-
ulations could only be undertaken for length less than n ≈ 64
to a reasonable degree of convergence. As such we investi-
gated the full phase diagram based on the finite-size behavior
of two-parameter slices of the three-parameter space, for
n = 128. We remark that even such two-parameter flatPERM
approach has demanded extensive simulations. As already
shown in the previous section, these finite-size phase diagrams
(built up from the fluctuation maps) capture the correct ther-
modynamic properties of the system, though quantitatively
incorrect in most cases. Indeed we found no evidence of new
phases, beyond the four ones already discussed. Moreover,
since there is only a crossover between the adsorbed Ad1 rich
and Ad2 rich regions, no transition line separating them will
be shown, even if we indicate their locations in the figures.

A. κ slices

Let us start analyzing slices for κ fixed. We recall that
for κ = 1 [i.e., the plane (ω2, ω3, 1) considered in Sec. IV A]
the three bulk phases (coil, globule, and crystal) are present
in the system, as shows Figs. 3, 5, and 12. Since, for small
values of κ , the bulk transitions are not expected to be
affected by the presence of an interacting surface, the same
diagram of κ = 1 is expected in this region. In fact, as
demonstrated in Fig. 13(a), the finite-size phase diagram for
κ = 2 is practically identical to the one for κ = 1 shown in
Fig. 3. This strongly indicates that the transition lines between
the three bulk phases give rise to three surfaces: a tricriti-
cal coil-globule, a critical crystal-globule, and a coexistence

coil-crystal, consistently with the predictions above based
on Fig. 12. Moreover, the multicritical point found in the
case κ = 1 gives rise to a multicritical line, where the three
surfaces above meet. Since this line is related to bulk phases
only, we will refer to it as the bulk multicritical line (BML).
Note that these bulk transition surfaces, as well as the BML
are all expected to be κ-independent, i.e., perpendicular to the
(ω2, ω3) plane. This is indeed confirmed by the quantitative
agreement between the finite-size transition lines in Figs. 3
and 13(a) for κ = 1 and 2, respectively, as well as for inter-
mediate κ slices (not shown).

All these bulk transition surfaces (and the BML, as well)
are expected to end when they meet the adsorption transition
surfaces. Figures 7, 11, and 12 indicate that the coil-adsorbed
and the globule-adsorbed critical surfaces in the thermody-
namic limit change mildly with ω2 and ω3, being located
close to κ = 2. The same thing happens in the diagrams for
n = 128, as seen in Figs. 6 and 9(a), where such surfaces are
in the region 2 � κ � 3. Therefore, it is hard to observe these
adsorption surfaces in planes of fixed κ . Anyhow, as shown
in Fig. 13(b), for the κ = 3 slice, the only bulk phase ap-
pearing in this diagram is the crystal one, confirming that we
are above the coil-adsorbed and globule-adsorbed surfaces.
Interestingly, in the region for small ω2 (where the coil phase
was observed for smaller κ) one finds the adsorbed phase is
Ad1 rich, while for large values of ω2 the adsorbed phase is
Ad2 rich.

At finite length n = 128, as shown in the diagram for κ = 3
[Fig. 13(b)], the crystal-adsorbed transition is still found to
be discontinuous for small ω2, as evidenced by a bimodal
energy distribution. As discussed above, there is only one
adsorbed phase, so that one would expect this transition to
remain discontinuous for all values of ω2. Unfortunately, we
are unable to detect a bimodal distribution for large ω2 but
believe that this is simply a finite size effect.

B. ω2 slices

Now we investigate planes for ω2 fixed. As already demon-
strated in Sec. IV B, for ω2 = 1 three phases are present in the
diagram: adsorbed, coil, and crystal (see Fig. 6, for n = 128).
Figure 14(a) displays the behavior for ω2 = 1.5, which is the
same for ω2 = 1, confirming the existence of a continuous
coil-adsorbed transition surface, as well as of discontinuous
coil-crystal and crystal-adsorbed ones. Moreover, since the
former critical surface seems to end at its junction with the
latter two coexistence ones, they shall form a line of critical-
end-points (a CEP line) there.

The slice ω2 = 2 is shown in Fig. 14(b), where a different
thermodynamic behavior is observed. According to Figs. 3
and 13, in such plane, with κ small, one should observe
transitions from coil to globule and then from globule to
crystal by increasing ω3. It turns out, however, that the fluctu-
ation map displayed in Fig. 14(b) fails in capturing the coil-
globule transition, although for very small ω3 the trails have
the characteristics of the coil phase. This caveat is certainly
due to the short lengths considered. For large values of κ , the
expected adsorbed phase is observed.

We note that for the crystal-adsorbed transition at ω2 =
2.0 we were unable to detect a bimodal distribution. While
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FIG. 14. Fluctuation maps in spaces (1.5, ω3, κ ) and (2.0, ω3, κ )
in (a) and (b), respectively, with transition lines indicated. In all
panels solid and dashed lines indicate the presence of unimodal and
bimodal energy distributions near the transition, respectively.

consistent with the numerical evidence in the κ slices we
reiterate that we expect this to be a finite-size effect.

For fixed ω2, the globule-crystal transition line meets the
adsorbed phase at a dense-adsorbed multicritical point, which
in the full phase diagram extends to a dense-adsorbed multi-
critical (DAM) line. Such a line seems also to join the CEP
and the BML lines at a special multicritical point.

C. ω3 slices

We now present the results for planes with ω3 fixed.
Fig. 15(a) presents the diagram for the ω3 = 8 slice, which
is qualitatively identical to the one for ω3 = 1, see Fig. 9(a);
slices for intermediate values of ω3 (not shown) display the
same behavior. This gives additional confirmation of the exis-
tence of a tricritical coil-globule and of critical coil-adsorbed
and globule-adsorbed surfaces. These three surfaces meet,
yielding a third multicritical line in the three-parameter space,
which we will refer to as the collapsed-adsorbed multicritical
(CAM) line. We expect that this CAM line also ends at the
special multicritical point where the DAM, CEP, and BML
lines meet.

FIG. 15. Fluctuation maps in spaces (ω2, 8, κ ) and (ω2, 12, κ )
in (a) and (b), respectively, with transition lines indicated. In both
panels solid and dashed lines indicate the presence of unimodal and
bimodal energy distributions near the transition, respectively.

FIG. 16. Qualitative representation of the full phase diagram,
presenting the four phases found (regarding the regions Ad1 and
Ad2 simply as the adsorbed phase), the critical-end-point (CEP)
line, as well as the bulk (BML), collapsed-adsorbed (CAM), and
dense-adsorbed (DAM) multicritical lines. The special multicritical
point is denoted by a circle.

As expected from Figs. 3, 6, and 12, for large values of
ω3 the crystal phase appears in place of the coil phase for
small values of ω2 and κ . For ω3 = 12, this is demonstrated
in Fig. 15(b). We are unable to detect a bimodal energy
distribution along the whole crystal-adsorbed transition line,
but attribute this to finite-size effects as discussed above.

VI. SUMMARY: FULL PHASE DIAGRAM

Our simulation results for self-attracting self-avoiding
trails living on the triangular lattice and attractively interacting
with a surface reveals a very rich thermodynamic behavior,
with three bulk phases (coil, globule, and crystal) and an
adsorbed phase with two regions related to different ground
states (the ordinary monolayer Ad1 rich region and a bilayer
Ad2 rich region). The coil phase exists in a bounded part of
the full phase diagram where the three Boltzmann weights
ω2, ω3, and κ are small. The crystal phase appears in the
region where κ and ω2 are relatively small, but ω3 is large.
Similarly, the globule phase exists for small κ and large ω2.
Finally, the adsorbed phase appear in the region of large κ .
These features are summarized in the sketch of the full phase
diagram depicted in Fig. 16, where no distinction is made
between both adsorbed regions since we determined that there
is only a smooth crossover between them.

Three bulk transition surfaces are present in the system, for
small κ: the continuous coil-globule (possibly in θ class [9])
and globule-crystal surfaces and a discontinuous coil-crystal
surface. These three surfaces meet at the multicritical BML
line, which seems to end close to κ = 2. We remark that the
coordinates of such line in the plane (ω2, ω3) with κ = 1, i.e.,
in the absence of the surface interaction, is exactly known to
be (ω2, ω3) = ( 5

3 , 25
3 ) [9]. Hence, by assuming that the bulk

transitions are not affected by the surface interaction when κ

is small, the BML line should end at a special multicritical
point located at (ω2 = 5

3 , ω3 = 25
3 , κ ≈ 2).

Beyond the three bulk surfaces, there are also several
adsorption transition surfaces in the full phase diagram, which
separate the bulk phases from the adsorbed ones. The coil-
adsorbed and the globule-adsorbed are continuous, and they
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meet the tricritical coil-globule surface at the multicritical
CAM line. Part of the critical coil-adsorbed surface ends at the
coexistence surfaces separating the crystal phase from the coil
and adsorbed ones, so that a CEP line exists there. Moreover,
the globule-crystal, globule-adsorbed, and crystal-adsorbed
surfaces meet at another multicritical DAM line. Therefore,
there are three multicritical (BML, CAM, and DAM), and a
CEP line in the phase diagram. Our results for finite trails
indicate that all these lines meet at the special multicritical
point discussed above.
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