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Abstract

We enumerate height-restricted path diagrams associated with q-tangent and q-

secant numbers by considering convergents of continued fractions, leading to ex-

pressions involving basic hypergeometric functions. Our work generalises some
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1. Introduction and Statement of Results

Much work has been done on the enumeration of non-crossing directed lattice

paths in both the mathematics and the physics communities, see e.g. [1, 2]. The

work here takes into account two paths given by a path diagram, i.e. a Dyck

path and a general directed path restrained to lie between the x-axis and this

Dyck path. In particular, we shall consider Dyck paths restricted by height.

A Dyck path is a lattice path on N2 from (0, 0) to (2n, 0) consisting of n

steps in the northeast direction of the form (1, 1) and n steps in the southeast

direction of the form (1,−1) such that the path never goes below the line y = 0.

We encode a Dyck path in terms of labelled steps where each step is indexed
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with the height of the point from where it starts. For example, the labelled

path shown in Figure 1 is encoded as (a0, b1, a0, a1, a2, b3, b2, a1, b2, b1), where

ai is a northeast step starting at height i and bj is a southeast step starting at

height j. So we can say that there is a set X = {a0, a1, a2, . . .}∪{b1, b2, b3, . . .},

the elements of which, as an ordered finite sequence, are associated with a Dyck

path. We consider path diagrams [3] which are represented by a Dyck path

and the set of points under it subjected to some conditions expressed using the

above encoding.

Definition 1.1 ([3]). Path Diagrams. A system of path diagrams is defined by

a possibility function

pos : X → N0.

Path diagrams are composed of the Dyck path u = u1u2u3 . . . un where for

j = 1, 2, . . . , n each uj ∈ X, and the corresponding sequence of integers s =

s1s2s3 . . . sn where for i = 1, 2, . . . , n each 0 ≤ si ≤ pos(uj). We get n points

corresponding to a path of length n.

We consider two types of path diagrams. In the first case we consider all

possible lattice points bounded by the x-axis and a Dyck path by using the

possibility function

pos(aj) = j, pos(bk) = k, for j ≥ 0 and k ≥ 1. (1.1)

In the second case we restrict this set of points by excluding the points which

are in contact with the Dyck path at a southeast step, leading to

pos(aj) = j, pos(bk) = k − 1, for j ≥ 0 and k ≥ 1. (1.2)

These two possibility functions map labelled steps onto a set of integers. These

integers can be visualised as column heights, and a path is then formed by

joining the peaks of the columns.

Figure 1 shows an example of one such path diagram given the Dyck path

example used above. Columns of heights are formed by the sequence of integers

(0, 0, 0, 0, 1, 3, 1, 0, 1, 1), with the associated path shown as a dotted line. When
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Figure 1: A Dyck path of half length N = 5 (solid blue line), together with columns of

heights formed by the integers (0, 0, 0, 0, 1, 3, 1, 0, 1, 1) (dashed green lines). The dotted red

line combined with the Dyck path represents the path diagram.

restricting the height of the Dyck path, we can interpret this as a model of two

non crossing paths in a finite slit.

Let a
(w)
N,m be the number of path diagrams defined by the possibility func-

tion (1.1) and b
(w)
N,m be the number of path diagrams formed by the possibility

function (1.2), bounded by a Dyck path of length 2N in a slit of width w. Then

we define the associated generating functions

Gw(t, q) =

∞∑
N,m=0

a
(w)
N,mt

2Nqm (1.3)

and

G′w(t, q) =

∞∑
N,m=0

b
(w)
N,mt

2Nqm, (1.4)

with the variable q conjugate to the sum of column heights m and the variable

t conjugate to the length 2N of the Dyck path.

To state our results, we define

φ(λ, x) =

∞∑
k=0

(iλ; q)k(−iλ; q)kx
k

(λ2q; q)k(q; q)k
= 2φ1(iλ,−iλ;λ2q; q, x) (1.5)

and

ψ(λ, x) =

∞∑
k=0

(iλ
√
q; q)k(−iλ√q; q)kxk

(λ2q; q)k(q; q)k
= 2φ1(iλ

√
q,−iλ√q;λ2q; q, x), (1.6)

where 2φ1(a, b; c; q, x) =
∑∞
k=0

(a;q)k(b;q)k x
k

(c;q)k(q;q)k
is a basic hypergeometric function.
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Here, (a; q)n =
n−1∏
k=0

(1 − aqk) is the standard notation for the q-Pochhammer

symbol.

For the path diagrams defined via (1.1), we obtain the following theorem.

Theorem 1.2. For w ≥ 0,

Gw(t, q) =
1

1−
λ2(1− q)

[
λ̄wφ(λ, q3)φ

(
λ̄, qw+3

)
− λwφ

(
λ̄, q3

)
φ(λ, qw+3)

]
(1 + λ2)

[
λ̄wφ(λ, q2)φ

(
λ̄, qw+3

)
− λw+2φ

(
λ̄, q2

)
φ(λ, qw+3)

] ,
(1.7)

where λ is a root of λ2 − λ(1− q)/t+ 1 = 0 and λ̄ = 1/λ.

Taking the limit w →∞ we obtain the generating function G(t, q) for unre-

stricted path diagrams.

Corollary 1.3. The generating function of q-tangent numbers is

G(t, q) =

(1 + λ)2
[
1− (1 + λ2)

∞∑
k=0

(−iλ)k

(1− iλqk)

]
λ2(1− q)

, (1.8)

where λ is the root of λ2 − λ(1− q)/t+ 1 = 0 with smallest modulus.

Extracting coefficients of this generating function, we can derive a result

equivalent to one obtained previously by different methods [4, Theorem 1.4].

Corollary 1.4.

[t2N ]G(t, q) =
1

(1− q)2N+1

N∑
m=0

qm
2+2m

(
m+1∑
l=−m

(−1)lq−l
2+2l

)
(2m+ 2)

(
2N+1
N+m+1

)
N +m+ 2

(1.9)

For the path diagrams defined via (1.2), we obtain the following theorem.

Theorem 1.5. For w ≥ 0,

G′w(t, q) =
1

1−
λ2(1− q)

[
λ̄wψ(λ, q2)ψ

(
λ̄, qw+2

)
− λwψ

(
λ̄, q2

)
ψ(λ, qw+2)

]
(1 + λ2)

[
λ̄wψ(λ, q)ψ

(
λ̄, qw+2

)
− λw+2ψ

(
λ̄, q
)
ψ(λ, qw+2)

] ,
(1.10)

where λ is the root of λ2 − λ(1− q)/t+ 1 = 0 and λ̄ = 1/λ.
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Taking the limit w → ∞ we obtain the generating function G′(t, q) for

unrestricted path diagrams.

Corollary 1.6. The generating function of q-secant numbers is

G′(t, q) = (1 + λ2)

∞∑
k=0

(−iλ√q)k

(1− iλ√qqk)
, (1.11)

where λ is the root of λ2 − λ(1− q)/t+ 1 = 0 with smallest modulus.

Extracting coefficients of this generating function, we can derive a result

equivalent to one obtained previously by different methods [4, Theorem 1.5].

Corollary 1.7.

[t2N ]G′(t, q) =
1

(1− q)2N
N∑
m=0

qm
2+m

(
m∑

l=−m
(−1)lq−l

2

)
(2m+ 1)

(
2N
N+m

)
N +m+ 1

.

(1.12)

This paper is organized as follows. Section 2 contains further conventions

and preliminaries. Section 3 contains the proofs of Theorem 1.2 and Corollaries

1.3 and 1.4. Section 4 contains the proofs of Theorem 1.5 and Corollaries 1.6

and 1.7. Section 5 contains some novel identities discovered.

2. Conventions and Preliminaries

In [3], the correspondence between generating functions and continued frac-

tions has been discussed in detail. In particular, in [3, Theorem 3A] and [3,

Theorem 3B] we find continued fraction expansions for the formal generating

functions of path diagrams bounded by a Dyck path with possibility functions

given by (1.1) and (1.2), respectively. It turns out that the counting numbers in

these generating functions are the Euler numbers EN , with G(t, 1) and G′(t, 1)

summing over the odd and even Euler numbers, i.e.

tG(t, 1) =

∞∑
N=0

E2N+1t
2N+1 =

t

1−
1.2t2

1−
2.3t2

. . .

, (2.1)
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and

G′(t, 1) =

∞∑
N=0

E2N t
2N =

1

1−
1.1t2

1−
2.2t2

. . .

(2.2)

as formal non-convergent power series. The odd and even Euler numbers E2N+1

and E2N are also known as tangent and secant numbers, respectively, as they

occur in the Taylor expansion

tan t+ sec t =
∞∑
N=0

EN
tN

N !
. (2.3)

The formulas (2.1) and (2.2) were generalised in [4, 5] by introducing a variable

q conjugate to the sum of the column heights. Briefly, this corresponds to

replacing an integer k in (2.1) and (2.2) by the q-integer [k]q = 1 + q + · · · qk

(more details are given in Proposition 2.1), leading to

tG(t, q) =

∞∑
N=0

E2N+1(q)t2N+1 =
α(1− q)

1−
α2(1− q)(1− q2)

1−
α2(1− q2)(1− q3)

. . .

(2.4)

and

G′(t, q) =

∞∑
N=0

E2N (q)t2N =
1

1−
α2(1− q)2

1−
α2(1− q2)2

. . .

, (2.5)

where we have introduced

α =
t

1− q
(2.6)

and EN (q) are the q-Euler numbers. In particular E2N+1(q) and E2N (q) are

known as q-tangent and q-secant numbers, respectively [5]. Below we shall use

α and t interchangably, as convenient.
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The following proposition is the starting point of our analysis. It expresses

the height-restricted path diagram generating functions Gw(t, q) and G′w(t, q)

as finite continued fractions.

Proposition 2.1. For w ≥ 0,

Gw(t, q) =
1

1−
α2(1− q)(1− q2)

1−
α2(1− q2)(1− q3)

. . .−
α2(1− qw−1)(1− qw)

1− α2(1− qw)(1− qw+1)

(2.7)

and

G′w(t, q) =
1

1−
α2(1− q)2

1−
α2(1− q2)2

. . . −
α2(1− qw−1)2

1− α2(1− qw)2

. (2.8)

Proof. From the combinatorial theory of continued fractions given in [3], if X =

(a0, a1, a2, .., b0, b1, ..) then the Stieltjes type continued fraction is

Sk(X, t) =
1

1−
a0b1t

2

1−
a1b2t

2

. . . −
ak−2bk−1t

2

1− ak−1bkt2

where ai corresponds to the weight of a northeast step starting at height i,

bj corresponds to the weight of a southeast step starting at height j, and t is

conjugate to the length of the Dyck path. Hence, we only need to specify the

weights ai and bj .

Possible column heights below a northeast step starting at height i range

from 0 to i, and hence ai = 1 + q + . . . + qi. For Gw possible column heights
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below a southeast step starting at height j range from 0 to j, and hence bj =

1 + q+ . . .+ qj , whereas for G′w possible column heights below a southeast step

starting at height j range from 0 to j− 1, and hence bj = 1 + q+ . . .+ qj−1.

It is obvious that we can write the right-hand sides of (2.7) and (2.8) as

rational functions.

Proposition 2.2. For w ≥ 0,

Gw(t, q) =
Pw(α, q)

Qw(α, q)
and G′w(t, q) =

P ′w(α, q)

Q′w(α, q)
, (2.9)

where

Pw =


0 w = −1

1 w = 0

Pw−1 − α2(1− qw)(1− qw+1)Pw−2 w ≥ 1

, (2.10)

Qw =


1 w = −1

1 w = 0

Qw−1 − α2(1− qw)(1− qw+1)Qw−2 w ≥ 1

, (2.11)

P ′w =


0 w = −1

1 w = 0

Pw−1 − α2(1− qw)2Pw−2 w ≥ 1

and (2.12)

Q′w =


1 w = −1

1 w = 0

Qw−1 − α2(1− qw)2Qw−2 w ≥ 1

. (2.13)

Proof. The initial conditions follow from the fact that G−1(t, q) = G′−1(t, q) =

0/1. This implies that P−1 = P ′−1 = 0 and Q−1 = Q′−1 = 1. Also for w = 0 we

have G0(t, q) = G′0(t, q) = 1/1. For w ≥ 1 we compare with the h-th convergent

of the J-fraction on page 152 of [3]. We have z = t and ak = 1 for k ≥ 1 and

8



bk = (1 − qw)(1 − qw+1) and ck = 0 for k ≥ 0. This reduces to the recurrence

equations given in (2.10) and (2.11). For the generating function G′w(t, q) we see

that, instead, bk = (1 − qw)(1 − qw), which results in the recurrence equations

given in (2.12) and (2.13).

3. q-tangent numbers

We shall prove Theorem 1.2 by solving the recurrence relations (2.10) and

(2.11). We can write Pw and Qw as the linear combination of two basic hyper-

geometric functions and determine the coefficients from the initial conditions of

the recurrences given in Proposition 2.2.

Proof of Theorem 1.2. For w ≥ 1 the recurrence relations for Pw(α, q) and

Qw(α, q) are the same, so we represent them both by R(w) and solve simul-

taneously. From the recursion given in (2.10) and (2.11) we have for w ≥ 1,

R(w) = R(w − 1)− α2(1− qw)(1− qw+1)R(w − 2). (3.1)

Unlike a linear recurrence with constant coefficients, this cannot be solved

by a standard method because we have w-dependent coefficients. Moreover, the

occurrence of both qw and q2w poses a difficulty, so our next step will be to

eliminate the term containing q2w by appropriate rewriting of the recurrences.

It is evident from the coefficient of R(w − 2) that multiplying by a q-factorial

will simplify (3.1) appropriately. Rescaling the recursion (3.1) by substituting

R(w) = αw(q; q)w+1S(w) (3.2)

leads to the recurrence

S(w)− 1

α
S(w − 1) + S(w − 2) = qw+1(S(w) + S(w − 2)) (3.3)

for w ≥ 1. This eliminates q2w from the recurrence as intended, as the right

hand side only contains a qw prefactor. The left hand side of equation (3.3) is

a linear homogeneous recurrence relation with a characteristic polynomial

P (λ) = λ2 − λ

α
+ 1. (3.4)
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The two roots λ1 and λ2 of the characteristic polynomial are reciprocal to each

other,

λ1λ2 = 1, (3.5)

a fact that we will need to use below. If the right hand side of the recurrence

relation (3.3) was zero then the solution could be written as a q-independent

linear combination of the powers of the roots of the characteristic polynomial.

To solve the recurrence (3.3) in general, we use the ansatz

S(w) = λw
∞∑
k=0

ckq
kw, (3.6)

which has been shown to work when there are powers of qw in such a linear

recurrence [6, 7]. The recurrence relation for ck can then be read off from

P (λ)c0 +

∞∑
k=1

qkw−2k
(
P (λqk)ck − (λ2q2k + q2)qck−1

)
= 0. (3.7)

This equation is satisfied if P (λ) = 0 and all the coefficients in the sum vanish,

i.e. P (λqk)ck − (λ2q2k + q2)qck−1 = 0. The latter condition implies

ck =
(λ2q2k + q2)qck−1

P (λqk)
. (3.8)

The condition P (λ) = 0 enables us to express α in terms of λ as α = λ/(1+λ2),

and eliminating α in the characteristic polynomial (3.4), we find

P (λqk) = (1− qk)(1− λ2qk). (3.9)

Now substituting in the value of P (λqk) from (3.9) in (3.8) and iterating it we

have

ck =
(−λ2; q2)k q

3k

(q; q)k(λ2q; q)k
, (3.10)

where we choose to write all products in terms of the q-Pochhammer symbol.

The full solution to the recurrence equation (3.3) is a linear combination of the

ansatz (3.6) over both roots of P (λ). As P (λ) = 0 implies P (λ̄) = 0, we can

write the general solution for S(w) as

S(w) = Aλw
∞∑
k=0

ck(λ, q)qkw +Bλ̄w
∞∑
k=0

ck
(
λ̄, q
)
qkw. (3.11)
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We can now write the general solution in terms of a basic hypergeometric series

by defining

φ(λ, x) =

∞∑
k=0

(−λ2; q2)kx
k

(q; q)k(λ2q; q)k
= 2φ1(iλ,−iλ;λ2q; q, x), (3.12)

where

2φ1(a, b; c; q, x) =

∞∑
k=0

(a; q)k(b; q)k x
k

(c; q)k(q; q)k
.

Using this notation, the general solution S(w) can simply be written as

S(w) = Aλwφ(λ, qw+3) +Bλ̄wφ
(
λ̄, qw+3

)
. (3.13)

Using the initial conditions

S(−1) = 0 S(0) =
1

1− q

derived from (2.10) and solving for A and B, we get

A =
−λ2φ

(
λ̄, q2

)
(1− q)

(
φ(λ, q2)φ

(
λ̄, q3

)
− λ2φ

(
λ̄, q2

)
φ(λ, q3)

)
and

B =
φ(λ, q2)

(1− q)
(
φ(λ, q2)φ

(
λ̄, q3

)
− λ2φ

(
λ̄, q2

)
φ(λ, q3)

) .
Similarly, using the initial conditions

S(−1) = α S(0) =
1

1− q

derived from (2.11) we get

A =
(α)(λ)(1− q)φ

(
λ̄, q3

)
− λ2φ

(
λ̄, q2

)
(1− q)

(
φ(λ, q2)φ

(
λ̄, q3

)
− λ2φ

(
λ̄, q2

)
φ(λ, q3)

)
and

B =
φ(λ, q2)− (α)(λ)(1− q)φ(λ, q3)

(1− q)
(
φ(λ, q2)φ

(
λ̄, q3

)
− λ2φ

(
λ̄, q2

)
φ(λ, q3)

) .
Substituting the full solution for Pw(α, q) and Qw(α, q) in (2.9), we arrive at

the expression given in (1.7). This completes the proof.

By taking the limit of infinite w in the generating function Gw, we derive

an expression for the generating function of q-tangent numbers.

11



Proof of Corollary 1.8. We consider the right-hand side of (1.7). We know that

the basic hypergeometric functions converge when |q| < 1 using the ratio test.

From (3.5) we see that one of the roots of the characteristic polynomial (3.4) is

less than one if t is sufficiently small. We therefore choose the root λ such that

|λ| < 1. When w →∞,

φ(λ, qw+3) = 2φ1(iλ,−iλ;λ2q; q, qw+3)→ 2φ1(iλ,−iλ;λ2q; q, 0) = 1.

Also

|λw| → 0.

This implies

G(t, q) =
1

1− λ2(1− q)φ(λ, q3)

(1 + λ2)φ(λ, q2)

. (3.14)

Heine’s transformation formula for 2φ1 series [8] is given by

2φ1(a, b; c; q, z) =
(b; q)∞(az; q)∞
(c; q)∞(z; q)∞

2φ1(c/b, z; az; q, b). (3.15)

Using this transformation we can write the basic hypergeometric functions in

(3.14) as follows

φ(λ, q2) =
(−iλ; q)∞(iλq2; q)∞

(λ2q; q)∞(q2; q)∞
2φ1(iλq, q2; iλq2; q,−iλ) (3.16)

and

φ(λ, q3) =
(−iλ; q)∞(iλq3; q)∞

(λ2q; q)∞(q3; q)∞
2φ1(iλq, q3; iλq3; q,−iλ). (3.17)

Further substituting the transformations of basic hypergeometric functions from

(3.16) and (3.17) into (3.14) yields

G(t, q) =
1

1−
λ2(1− q) (−iλ; q)∞(iλq3; q)∞

(λ2q; q)∞(q3; q)∞
2φ1(iλq, q3; iλq3; q,−iλ)

(1 + λ2)
(−iλ; q)∞(iλq2; q)∞

(λ2q; q)∞(q2; q)∞
2φ1(iλq, q2; iλq2; q,−iλ)

. (3.18)
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Expressing these basic hypergeometric functions by their explicit sums, we find

that many factors in the coefficients cancel:

G(t, q) =
1

1−
λ2(1− q)(1− q2)

∞∑
k=0

(iλq; q)k(q3; q)k
(iλq3; q)k(q; q)k

(−iλ)k

(1− iλq2)(1 + λ2)
∞∑
k=0

(iλq; q)k(q2; q)k
(iλq2; q)k(q; q)k

(−iλ)k

(3.19)

=
1

1−
(λ2)(1− q)

∞∑
k=0

(1− qk+1)(1− qk+2)

(1− iλqk+1)(1− iλqk+2)
(−iλ)k

(1 + λ2)
∞∑
k=0

(1− qk+1)

(1− iλqk+1)
(−iλ)k

. (3.20)

We next aim to simplify the terms in the sums on the right hand side of (3.20).

For this we let

N =
(1− qk+1)(1− qk+2)

(1− iλqk+1)(1− iλqk+2)
(−iλ)k (3.21)

and

D =
(1− qk+1)

(1− iλqk+1)
(−iλ)k. (3.22)

We substitute x = −iλ and employ partial fraction expansion with respect to

qk. Shifting summation indices and combining fractions, we find

N = (−1)

x4
∞∑
k=0

xk

(1 + xqk+1)
− 2x2

∞∑
k=0

xk

(1 + xqk+1)

x4(q − 1)(x− 1)

−

∞∑
k=0

xk

(1 + xqk+1)
+ x2q + 1

x4(q − 1)(x− 1)
(3.23)

and

D =

x2
∞∑
k=0

xk

(1 + xqk)
−
∞∑
k=0

xk

(1 + xqk)
+ 1

x2(x− 1)
. (3.24)

Substituting (3.23) and (3.24) into (3.20) and simplifying, we get the final ex-

pression (1.8).
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Next, we extract the coefficient of t2N of G(t, q) given in (1.8). To start, we

need an identity which can be obtained from counting rectangles on the square

lattice in two different ways, taking ideas from [9].

Lemma 3.1.
∞∑
n=0

xn

1− yqn
=

∞∑
n=0

xnynqn
2

(1− xyq2n)

(1− xqn)(1− yqn)
. (3.25)

Proof. We consider the generating function of rectangles (including those of

height or width zero) on the square lattice, counted with respect to height,

width, and area, given by

R(x, y, q) =

∞∑
n,m=0

xnymqnm . (3.26)

Summing over m gives the left hand side of identity (3.25). If we instead sum

over rectangles of fixed minimal width or height N , then this gives the right

hand side of identity (3.25).

Proof of Corollary 1.4. The sum in (1.8) can be identified with R(−iλ, iλ, q),

so that using Lemma 3.1 we get

G(t, q) =
(1 + λ)2

[
1− (1 + λ2)R(−iλ, iλ, q)

]
λ2(1− q)

=

(1 + λ)2

[
1− (1 + λ2)

∞∑
n=0

qn
2

λ2n(1− λ2q2n)

(1 + λ2q2n)

]
λ2(1− q)

. (3.27)

We remind that G(t, q) is by definition an even function in t, and that the t-

dependence on the right hand side is implicit in λ = λ(t) by (3.4) and (2.6). To

extract the coefficient of t2N , we evaluate the contour integral

[t2N ]G(t, q) =
1

2πi

∮
G(t, q)

t2N+1
dt . (3.28)

Using the variable substitution

t =
(1− q)λ
1 + λ2

, (3.29)
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we get

[t2N ]G(t, q) =

1

2πi

∮ 
(1 + λ2)2N

(
1− (1 + λ2)

∞∑
n=0

qn
2

λ2n(1− λ2q2n)

(1 + λ2q2n)

)
(1− λ2)

λ2N+2(1− q)2N+1

 dλ

λ
.

(3.30)

We thus have

[t2N ]G (t, q) = [λ0]HN (λ, q), (3.31)

and to extract the constant term in λ on the right-hand side we now expand

HN (λ, q) as a Laurent series in λ. For this, we write

[λ0]HN (λ, q) = [λ0]

T1 − T2
∞∑
n=0

T3

((1− q)2N+1
, (3.32)

where

T1 =

(
λ+

1

λ

)2N (
1

λ2
− 1

)
,

T2 =

(
λ+

1

λ

)2N (
1

λ2
− 1

)
(1 + λ2),

and

T3 =
qn

2

λ2n(1− λ2q2n)

(1 + λ2q2n)
.

We find the series expansions

T1 =

2N+1∑
k=0

(2N)!(2N − 2k + 1)λ2k−2N−2

k!(2N − k + 1)!
, (3.33)

T2 =

2N+2∑
k=0

(2N + 1)!(2N − 2k + 2)λ2k−2N−2

k!(2N − k + 2)!
(3.34)

and

T3 = qn
2

λ2n

(
2

( ∞∑
l=0

(−1)l(λ2q2n)l

)
− 1

)
. (3.35)
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Next we substitute the expression (3.33), (3.34) and (3.35) in (3.32), which after

some simplification leads to

HN (λ, q) =
1

(1− q)2N+1

(
2N+1∑
k=0

(2N)!(2N − 2k + 1)λ2k−2N−2

k!(2N − k + 1)!

−2

∞∑
n=0

∞∑
l=0

2N+2∑
k=0

(−1)lqn
2+2nl (2N + 1)!(2N − 2k + 2)λ2k−2N−2+2n+2l

k!(2N − k + 2)!

+

∞∑
n=0

2N+2∑
k=0

qn
2 (2N + 1)!(2N − 2k + 2)λ2k−2N−2+2n

k!(2N − k + 2 + 2n)!

)
. (3.36)

We want to extract the constant term in λ, so we combine the powers of λ and

equate them to 0. This fixes the summation index k, and we get

[t2N ]G (t, q) =
1

(1− q)2N+1

(
− (2N)!

N !(N + 1)!

−2

N+1∑
n=0

N−n+1∑
l=0

(−1)lqn
2+2nl (2N + 1)!(2n+ 2l)

(N − n− l + 1)!(N + n+ l + 1)!

+

N+1∑
n=0

qn
2 (2N + 1)!(2n)

(N − n+ 1)!(N + n+ 1)!

)
. (3.37)

Completing the square in the middle sum and changing summation indices leads

to

[t2N ]G (t, q) =
1

(1− q)2N+1

(
− (2N)!

N !(N + 1)!

−
N+1∑
m=0

qm
2 (2N + 1)!(2m)

(N −m+ 1)!(N +m+ 1)!

 m+1∑
l=−(m+1)

(−1)lq−l
2

 , (3.38)

where in a final step we combined the last two sums. Shifting summation indices

m and l gives

[t2N ]G (t, q) =
1

(1− q)2N+1

(
− (2N)!

N !(N + 1)!

+

N∑
m=0

qm
2+2m (2N + 1)!(2m+ 2)

(N −m)!(N +m+ 2)!

(
m+2∑
l=−m

(−1)lq−l
2+2l

))
. (3.39)

Performing the sum over m with l = m+ 2 cancels the first term and we arrive
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at an expression equivalent to (1.9),

[t2N ]G (t, q) =
1

(1− q)2N+1
×

N∑
m=0

qm
2+2m (2N + 1)!(2m+ 2)

(N −m)!(N +m+ 2)!

(
m+1∑
l=−m

(−1)lq−l
2+2l

)
. (3.40)

4. q-secant numbers

We begin by giving the proof of Theorem 1.5. We shall prove it by solving

the recurrences (2.12) and (2.13). This is done along the same lines as in the

proof of Theorem 1.2.

Proof. It follows from the continued fraction expansion given in (2.8) that both

the numerator P ′w(α, q) and denominator Q′w(α, q) satisfy the recurrence rela-

tions given in (2.12) and (2.13) respectively. As the recursions are the same for

w ≥ 1, we represent them both by R(w) and solve simultaneously. It follows

that

R(w) = R(w − 1)− α2(1− qw)2R(w − 2). (4.1)

Expanding the coefficient of R(w− 2) gives three terms which cannot be solved

explicitly using standard methods because we have w-dependent coefficients.

Also the terms qw and q2w cause difficulty, so we will aim to eliminate the

terms containing q2w by suitable rescaling. For this we use the ansatz (3.2).

This transformation of coefficients leads to

S(w)− 1

α
S(w − 1) + S(w − 2) = qw+1S(w) + qwS(w − 2) (4.2)

for w ≥ 1. This eliminates the q2w from the recurrence as intended, with only

qw factors on the right hand side. We see that this recurrence is very similar

to (3.3). The left hand side of (4.2) is a linear homogeneous recurrence relation

with the same characteristic polynomial (3.4) as above, however the right hand

side is slightly different, with a prefactor of qw in front of S(w − 2) instead of
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a prefactor qw+1. We thus use the same ansatz (3.6) to solve the recurrence.

Following a calculation identical to the one for q-tangent numbers, we find for

k > 0

ck =
(λ2q2k + q)qck−1

P (λqk)
. (4.3)

Now substituting the value of P (λqk) in (4.3) and iterating it, we get

ck =
(−λ2q; q2)k q

2k

(q; q)k(λ2q; q)k
. (4.4)

The full solution to the recurrence equation (4.2) is a linear combination of the

ansatz over both the values of λ. Here P (λ) = 0 and also P (λ̄) = 0 (where

λ̄ = 1
λ ). We can write the general solution for S(w) as

S(w) = Aλw
∞∑
k=0

ck(λ, q)qkw +Bλ̄w
∞∑
k=0

ck
(
λ̄, q
)
qkw. (4.5)

We define

ψ(λ, x) =

∞∑
k=0

(−λ2q; q2)k x
k

(q; q)k(λ2q; q)k
=

∞∑
k=0

(iλ
√
q; q)k(−iλ√q; q)kxk

(λ2q; q)k(q; q)k

= 2φ1(iλ
√
q,−iλ√q;λ2q; q, x)

where 2φ1 is a basic hypergeometric function. The general solution can be

expressed as follows

S(w) = Aλnψ(λ, qw+2) +Bλ̄wψ
(
λ̄, qw+2

)
. (4.6)

Using the initial conditions, we can solve for A and B. First we solve it for P ′w

with the initial conditions as

S(−1) = 0 S(0) =
1

1− q
.

Substituting these initial conditions into equation (4.6) and solving it for A and

B, we have

A =
−λ2ψ

(
λ̄, q
)

(1− q)
(
ψ(λ, q)ψ

(
λ̄, q2

)
− λ2ψ

(
λ̄, q
)
ψ(λ, q2)

)
and

B =
ψ(λ, q)

(1− q)
(
ψ(λ, q)ψ

(
λ̄, q2

)
− λ2ψ

(
λ̄, q
)
ψ(λ, q2)

) .
18



Similarly, we solve for Q′w using the initial conditions

S(−1) = α and S(0) =
1

1− q
.

We obtain

A =
(α)(λ)(1− q)ψ

(
λ̄, q2

)
− λ2ψ

(
λ̄, q
)

(1− q)
(
ψ(λ, q)ψ

(
λ̄, q2

)
− λ2ψ

(
λ̄, q
)
ψ(λ, q2)

)
and

B =
ψ(λ, q)− (α)(λ)(1− q)ψ(λ, q2)

(1− q)
(
ψ(λ, q)ψ

(
λ̄, q2

)
− λ2ψ

(
λ̄, q
)
ψ(λ, q2)

) .
Substituting the full solution for P ′w(α, q) and Q′w(α, q) in (2.9) we have the

expression in (1.10).

By taking the limit of infinite w in the generating function G′w, we derive

an expression for the generating function of q-secant numbers.

Proof of Corollary 1.6. Consider the right hand side of (1.10). As above, we

choose λ to be the smaller root of the characteristic polynomial (3.4). For

w →∞ we have

ψ(λ, qw+2) = 2φ1(iλ
√
q,−iλ√q;λ2q; q, qw+2)

→ 2φ1(iλ
√
q,−iλ√q;λ2q; q, 0) = 1 (4.7)

and

|λw| → 0 .

This implies

G′(t, q) =
1

1− λ2(1− q)ψ(λ, q2)

(1 + λ2)ψ(λ, q)

. (4.8)

Using Heine’s transformation formula given in (3.15), we transform the basic

hypergeometric functions given in (4.8) as follows

ψ(λ, q) =
(−iλ√q; q)∞(iλq3/2; q)∞

(λ2q; q)∞(q; q)∞
2φ1(iλ

√
q, q; iλq3/2; q,−iλ√q) (4.9)
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and

ψ(λ, q2) =
(−iλ√q; q)∞(iλq5/2; q)∞

(λ2q; q)∞(q2; q)∞
2φ1(iλ

√
q, q2; iλq5/2; q,−iλ√q). (4.10)

Substituting the transformations (4.9) and (4.10) into the limit (4.8) yields

G′(t, q) =

1

1−
λ2(1− q)

(−iλ√q; q)∞(iλq5/2; q)∞

(λ2q; q)∞(q2; q)∞
2φ1(iλ

√
q, q2; iλq5/2; q,−iλ√q)

(1 + λ2)
(−iλ√q; q)∞(iλq3/2; q)∞

(λ2q; q)∞(q; q)∞
2φ1(iλ

√
q, q; iλq3/2; q,−iλ√q)

.

(4.11)

Expressing these basic hypergeometric functions by their explicit sums, we find

G′(t, q) =
1

1−
λ2(1− q)2

∞∑
k=0

(iλ
√
q; q)k(q2; q)k

(iλq5/2; q)k(q; q)k
(−iλ√q)k

(1 + λ2)(1− iλq3/2)
∞∑
k=0

(iλ
√
q; q)k(q; q)k

(iλq3/2; q)k(q; q)k
(−iλ√q)k

(4.12)

=
1

1−
λ2(1− q)

∞∑
k=0

(1− qk+1)

(1− iλqk+1/2)(1− iλqk+3/2)
(−iλ√q)k

(1 + λ2)
∞∑
k=0

(−iλ√q)k

(1− iλqk+1/2)

. (4.13)

To simplify further we consider the expression in (4.13). We aim to simplify the

terms in the sums on the right hand side of (4.13). For this we let

N =

∞∑
k=0

(1− qk+1)

(1− iλqk+1/2)(1− iλqk+3/2)
(−iλ√q)k (4.14)

and

D =
(−iλ√q)k

(1− iλqk+1/2)
. (4.15)

We substitute x = −iλ√q and apply partial fraction decomposition to get

N =

(q − x2)
∞∑
k=0

xk

1 + xqk

x2(q − 1)
− q

x2(q − 1)
(4.16)
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and

D =

∞∑
k=0

xk

1 + xqk
. (4.17)

Substituting (4.16) and (4.17) into (4.13) and simplifying, we get the final result

as (1.11).

Next we extract the coefficient of t2N of G′(t, q) given in (1.11).

Proof of corollary 1.7. To prove this corollary we will again use the Lemma 3.1.

The sum in (1.11) can be identified with R(−iλ√q, iλ√q, q), so we get

G′(t, q) =(1 + λ)2R(−iλ√q, iλ√q, q)

=(1 + λ)2
∞∑
n=0

qn
2+nλ2n(1− λ2q2n+1)

(1 + λ2q2n+1)
. (4.18)

We remind that t-dependence on the right hand side is implicit in λ = λ(t). To

extract the coefficient of t2N , we evaluate the contour integral

[t2N ]G′(t, q) =
1

2πi

∮
G′(t, q)

t2N+1
dt. (4.19)

Using the variable substitution from (3.29), we have

[t2N ]G′(t, q) =

1

2πi

∮ 
(1 + λ)2N

(
∞∑
n=0

qn
2+nλ2n(1− λ2q2n+1)

(1 + λ2q2n+1)

)
(1− λ2)

λ2N (1− q)2N )

 dλ

λ
. (4.20)

We thus have

[t2N ]G′ (t, q) = [λ0]H ′N (λ, q) (4.21)

and to extract the constant term in λ on the right hand side we now expand

H ′N (λ, q) as a Laurent series in λ. For this we write

[λ0]H ′N (λ, q) = [λ0]T1

∞∑
k=0

T2 , (4.22)

where

T1 =

(
λ+

1

λ

)2N

(1− λ2)

(1− q)2N
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and

T2 =
qn

2+nλ2n(1− λ2q2n+1)

(1 + λ2q2n+1)
. (4.23)

We find the series expansions as

T1 =

2N+1∑
k=0

(2N)!(2N − 2k + 1)λ2k−2N

k!(2N − k + 1)!

(1− q)2N
(4.24)

and

T2 = qn
2+nλ2n

(
2

∞∑
l=0

(−1)l(λ2q2n+1)l − 1

)
. (4.25)

Next we substitute the expression (4.24) and (4.25) in (4.22), which after some

simplification leads to

H ′N (λ, q) =
1

(1− q)2N(
2

2N+1∑
k=0

∞∑
n=0

∞∑
l=0

(−1)lqn
2+n+2nl+l (2N)!(2N − 2k + 1)λ2k−2N+2n+2l

k!(2N − k + 1)!

−
2N+1∑
k=0

∞∑
n=0

qn
2+n (2N)!(2N − 2k + 1)λ2k−2N+2n

k!(2N − k + 1)!

)
. (4.26)

We aim to get the constant term in λ, so we combine the powers of λ and equate

them to 0. This fixes the summation index k, and we get

[t2N ]G′ (t, q) =
1

(1− q)2N
×2

∞∑
n,l=0

(−1)lqn
2+n+2nl+l (2N)!(2n+ 2l + 1)

(N − n− l)!(N + n+ l + 1)!

−
∞∑
n=0

qn
2+n (2N)!(2n+ 1)

(N − n)!(N + n+ 1)!

)
. (4.27)

Completing the square in the first sum and changing summation indices leads

to

[t2N ]G′ (t, q) =
1

(1− q)2N

(
N∑
m=0

qm
2+m (2N)!(2m+ 1)

(N −m)!(N +m+ 1)!(
2

m∑
l=0

(−1)lq−l
2

− 1

))
. (4.28)
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5. Identities

The central results of this chapter have been given in Theorems 1.2 and

1.5, which express finite continued fractions in terms of basic hypergeometric

functions. For example, for q-tangent numbers we have

1

1−
α2(1− q)(1− q2)

1−
α2(1− q2)(1− q3)

. . .−
α2(1− qw−1)(1− qw)

1− α2(1− qw)(1− qw+1)

=

1

1−
λ2(1− q)

[
λ̄wφ(λ, q3)φ

(
λ̄, qw+3

)
− λwφ

(
λ̄, q3

)
φ(λ, qw+3)

]
(1 + λ2)

[
λ̄wφ(λ, q2)φ

(
λ̄, qw+3

)
− λw+2φ

(
λ̄, q2

)
φ(λ, qw+3)

]
and a similar result holds for q-secant numbers. The point we would like to

make in this section is that these results can be interpreted as giving hierarchies

of identities for basic hypergeometric functions. For w small, the left hand side

is a relatively simple rational function in t and q, whereas the right hand side

is a weighted ratio of products of basic hypergeometric functions at specific

arguments. We make the resulting identities explicit for w = 1 in the following

corollary.

Corollary 5.1.

1− q2

1− ν2
=

[
2φ1(ν,−ν;−ν2q; q, q3) 2φ1

(
−ν̄, ν̄;−ν2q̄; q, q4

)
+ ν 2φ1 (−ν̄, ν̄;−ν2q̄; q, q3) 2φ1(ν,−ν;−ν2q; q, q4)

]
[

2φ1(ν,−ν;−ν2q; q, q2) 2φ1
(
−ν̄, ν̄;−ν2q̄; q, q4

)
− ν4 2φ1 (−ν̄, ν̄;−ν2q̄; q, q2) 2φ1(ν,−ν;−ν2q; q, q4)

] (5.1)

where ν = iλ, ν̄ = 1
ν and q̄ = 1

q , and

1− q
1− µ2q̄

=

[
2φ1(µ,−µ;−µ2; q, q2) 2φ1

(
−qµ̄, qµ̄;−q2µ̄2; q, q3

)
+ (µ2q̄) 2φ1 (−qµ̄, qµ̄;−q2µ̄2; q, q2) 2φ1(µ,−µ;−µ2; q, q3)

]
[

2φ1(µ,−µ;−µ2; q, q) 2φ1
(
−qµ̄, qµ̄;−q2µ̄2; q, q3

)
− µ4q̄2 2φ1 (−qµ̄, qµ̄;−q2µ̄2; q, q) 2φ1(µ,−µ;−µ2; q, q3)

]
(5.2)

where µ = iλ
√
q, µ̄ = 1

µ and q̄ = 1
q .
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Proof. Insert w = 1 in Theorems 1.2 and 1.5 and simplify.

To the best of our knowledge these identities are new. It would be interesting

to find an alternative derivation and perhaps deeper understanding of their

meaning.
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