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We investigate the surface adsorption transition of interacting self-avoiding square lattice trails onto a straight
boundary line. The character of this adsorption transition depends on the strength of the bulk interaction, which
induces a collapse transition of the trails from a swollen to a collapsed phase, separated by a critical state. If the
trail is in the critical state, the universality class of the adsorption transition changes; this is known as the special
adsorption point. Using flatPERM, a stochastic growth Monte Carlo algorithm, we simulate the adsorption of
self-avoiding interacting trails on the square lattice using three different boundary scenarios which differ with
respect to the orientation of the boundary and the type of surface interaction. We confirm the expected phase
diagram, showing swollen, collapsed, and adsorbed phases in all three scenarios, and confirm universality of
the normal adsorption transition at low values of the bulk interaction strength. Intriguingly, we cannot confirm
universality of the special adsorption transition. We find different values for the exponents; the most likely
explanation is that this is due to the presence of strong corrections to scaling at this point.
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I. INTRODUCTION

When a polymer in solution is in contact with an attractive
surface, it adsorbs upon decreasing temperature [1–10]. In
the presence of attractive bulk interactions, a polymer col-
lapses from a swollen coil to a collapsed globule [11,12].
Additionally, a polymer can also undergo a collapse transition
when adsorbed on a two-dimensional surface. To complicate
matters, introduction of stiffness can give rise to a collapsed
crystalline phase [13], giving rise to a complex phase diagram.

It hence is helpful to consider the simpler scenario of
two-dimensional flexible interacting polymers adsorbing onto
a line, where we find a two-dimensional phase diagram with
three phases: swollen coil, collapsed globule, and adsorbed
polymer [14]. The canonical lattice model for this is given by
self-avoiding walks on the square lattice tethered to a point
on the surface, with energetic contributions from the number
of nonconsecutive nearest-neighbor sites of the walk (bulk
interactions) and the number of sites of the walk in the surface
(surface interactions). This model has been extensively stud-
ied previously, and theoretically predicted critical exponents
have been confirmed numerically with high accuracy [15].

Recently, there has been renewed interest in the polymer
adsorption transition. In [10,16], it was argued based on
numerical simulations in three dimensions that the generally
accepted scaling theory for polymer adsorption in terms of
a single crossover exponent may break down in the pres-
ence of bulk interactions. Specifically, it was claimed that
the exponent involved in the temperature scaling of the free
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energy around the adsorption critical point is distinct from
the exponent describing the scaling of the order parameter at
this critical point, and moreover that these two exponents are
not universal with respect to varying the strength of the bulk
interactions.

Thus, there was need to examine the adsorption transition
more carefully in a variety of two- and three-dimensional
models [17,18], in order to test both the universality assump-
tion as well as the validity of the numerical methods used to
estimate the scaling exponents. The main conclusion of that
work was that existing methods for extracting critical expo-
nents for the adsorption transition from numerical data do not
seem to be able to capture the effect of finite-size corrections.
Different methods produced different exponent estimates with
statistical errors much smaller than the difference between
the estimates, and there also was no clear indication as to
which method was most reliable. It therefore seemed likely
that any apparent nonuniversal behavior was due to the fact
that the methods used could not account sufficiently well for
systematic error.

One of the models studied in [17] was the model of self-
avoiding trails (SATs) on the square and simple cubic lattice,
weighted by the number of sites in the surface. Trails are
lattice paths which may repeatedly visit sites but traverse
bonds only once. If one associates a contact interaction to
every multiply visited lattice site, then one can view self-
avoiding walks as self-avoiding trails with infinite repulsion.
It is known that self-avoiding trails and self-avoiding walks on
the square lattice are in the same universality class, with sub-
tle differences in the corrections to scaling [19]. Interacting
self-avoiding trails on the square lattice undergo a collapse
transition, which, however, is not in the same universality
class as the collapse transition of interacting self-avoiding
walks [20,21].
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FIG. 1. Examples of trails for the three cases of surface interaction studied. The trail starts at the solid circle in the surface. Bulk and
surface interactions are indicated by dashed circles and are denoted by ω and κ , respectively. Panel (a) shows monomer-surface interactions in
a horizontal surface, panel (b) shows bond-surface interactions in a horizontal surface, and panel (c) shows monomer-surface interactions in a
diagonal surface. Note that the starting point does not contribute for the surface energy.

In the current paper we extend previous studies by con-
sidering the adsorption transition for interacting self-avoiding
trails on the square lattice. We analyze the adsorption transi-
tion in the presence of bulk interactions of varying strength. In
addition to the normal adsorption transition from the swollen
to the adsorbed phase, we also study the special surface
transition occurring when collapsing polymers adsorb. The
value of the bulk interaction at which interacting self-avoiding
trails on the square lattice collapse is exactly known, as is
the free energy at this point [20], which is a major advantage
of studying this model in contrast to interacting self-avoiding
walks, where only a numerical estimate of the collapse transi-
tion point is available.

The temperature of the adsorption transition is sensitive to
the orientation of the boundary and type of boundary interac-
tion, but the same universal critical exponents are expected.
However, previous works [20,22] which have considered dif-
ferent surface interactions are in disagreement about the value
of the exponents for the special transition. Alternatively to
considering the number of sites of a trail in the surface [17],
one can consider the number of bonds of a trail in the sur-
face [22]. Also, while conventionally a horizontal surface is
considered, for interacting self-avoiding trails at the collapse
point it is advantageous to consider weighting the number
of sites along a diagonal line, as in this case the value of
the surface interaction at which collapsing trails adsorb is
exactly known [20]. We hence investigate normal and special
adsorption for all three scenarios: a horizontal boundary with
either site or bond interactions, and a diagonal boundary with
site interactions.

The paper is structured as follows. In Sec. II we define
the lattice model we investigate, and introduce relevant ther-
modynamic quantities. In Sec. III we review scaling laws
and critical exponents, and describe the methods by which
we extract exponents from numerical data. In Sec. IV we
describe the simulation methods used in this paper, and Sec. V
describes our findings in detail.

II. THE MODEL

A SAT is a finite lattice path on a regular lattice in which
every bond may only be traversed once. We identify the

monomers of a polymer with the site visits of the path, and
allow for more than one monomer on a site. In this paper we
are interested in the adsorption and collapse transition in the
SAT model on the square lattice. To achieve this we need
to introduce two types of interaction: a bulk interaction εb

between doubly visited sites (i.e., monomers on the same site),
and a surface interaction εs for a monomer (or bond) lying in
the surface, which we take to be the boundary of a half plane.
We fix the boundary to contain the origin and consider trails
starting at the origin, i.e., on the boundary.

We consider two ways to define the interaction between
a trail and the surface, given by either the monomers or the
bonds of the lattice path in the surface. We shall denote this the
monomer-surface (MS) or bond-surface (BS) case. Examples
of this are shown in Figs. 1(a) and 1(b), respectively, where the
surface is aligned with one of the lattice directions. When the
surface is not aligned, then bonds cannot lie in the surface, and
it only makes sense to consider the monomer-surface case. An
example of a diagonal surface (DS) oriented at 45◦ is shown
in Fig. 1(c).

The canonical (fixed length) partition function for adsorb-
ing and interacting trails is given by

Zn(κ, ω) =
∑

ms,mb

C(n)
ms,mb

κmsωmb, (1)

where κ = eβεs , ω = eβεb , and C(n)
ms,mb

is the number of n-step
lattice paths with ms surface contacts and mb doubly visited
sites, and β = 1/kBT with T the temperature. The reduced
finite-size free energy is

fn(κ, ω) = −1

n
log Zn(κ, ω), (2)

which in the thermodynamic limit gives

f∞(κ, ω) = lim
n→∞ fn(κ, ω). (3)

Any general thermodynamic quantity Q gives rise to averages

〈Q〉(κ, ω) = 1

Zn(κ, ω)

∑
ψn

κms (ψn )ωmb(ψn )Q(ψn), (4)

022121-2



ADSORPTION OF INTERACTING SELF-AVOIDING … PHYSICAL REVIEW E 100, 022121 (2019)

where the sum ranges over all n-step lattice trails ψn. In
particular, we are interested in the surface internal energy:

un(κ, ω) = 〈ms〉
n

. (5)

As this can be interpreted as the fraction of the trail that is
adsorbed in the surface, it is an order parameter for the surface
adsorption transition.

We also consider the components of the mean-squared end-
to-end radius R2

n parallel and perpendicular to the surface. For
a horizontal surface these are defined as

R2
⊥,n(κ, ω) = 〈

x2
n

〉
, (6)

R2
‖,n(κ, ω) = 〈

y2
n

〉
, (7)

with the end point of the trail being at (xn, yn), whereas for a
diagonal surface they are defined as

R2
⊥,n(κ, ω) = 1

2 〈(xn + yn)2〉, (8)

R2
‖,n(κ, ω) = 1

2 〈(xn − yn)2〉. (9)

III. SCALING LAWS AND CRITICAL EXPONENTS

The surface internal energy un is the order parameter of the
adsorption transition. For long lengths at the critical point un

scales as un ∼ nφ(a)−1. For finite lengths, finite-size corrections
need to be included:

un ∼ nφ(a)−1 f (0)
u (X )

[
1 + n−� f (1)

u (X ) + · · · ], (10)

where f (i)
u are scaling functions of the variable X = (Ta −

T )n1/δ and � is the first correction term.
As a consequence, for a fixed value of X (i.e., near a

critical transition), this induces a relationship between T and
n and therefore we can infer a dependence of the finite-size
transition temperature T (n)

a of the form

T (n)
a ∼ Ta + const n−1/δ, (11)

and hence 1/δ is identified as the crossover exponent for the
adsorption transition. Both critical exponents φ(a) and 1/δ are
believed to be universal and equal to each other [17]. For the
normal surface transition in two dimensions it is expected that
φ(a) = 1/δ = 1/2.

In what follows, we need to modify our notion of tem-
perature to take into account only the surface interactions,
and not the bulk interactions. We accomplish this by formally
introducing two temperature variables by writing κ = eβεs =
e1/Ts and ω = eβεb = e1/Tb . For the adsorption transition, we
fix Tb and in a slight abuse of notation identify T with Ts. We
can then measure 1/δ independently of φ(a) by calculating the
logarithmic derivative of un:


n = d log un

dTs
= (log κ )2

〈
m2

s

〉 − 〈ms〉2

〈ms〉 . (12)


n is related to a second derivative of the free energy, therefore
the peaks of 
n have the following scaling form:

max 
n ∼ n1/δ f (0)

 (X )

[
1 + n−� f (1)


 (X ) + · · · ]. (13)

Using the dependence of max 
n we can therefore determinate
the adsorption transition temperature and the exponent 1/δ.

Another way to determine the adsorption point is using
metric quantities. Using the scaling behavior of the parallel
and the perpendicular components R2

⊥/‖,n with respect to the
surface,

R2
⊥/‖,n ∼ n2ν⊥/‖ , (14)

where ν⊥/‖ is the respective Flory exponent, we can calcu-
late finite-size estimates of these exponents simply by using
Eq. (14):

ν⊥/‖,n = 1

2 log 2
log

(
R2

⊥/‖,n
R2

⊥/‖,n/2

)
. (15)

In the desorbed phase both components have the same value
in the thermodynamic limit. For an adsorbed configuration
the polymer becomes a quasi-one-dimensional system and
ν⊥ → 0 while ν‖ → 1. For some intermediate temperature the
components of ν cross, and using these crossing points we can
locate the finite-size temperatures of adsorption T (n)

a .
Similarly, we can use the asymptotic scaling of R2

n to de-
termine and locate the collapse transition point as ω changes
in the desorbed regime, i.e., for small values of κ . At high
temperatures ν assumes the Flory value of ν = 3/4 for the
swollen phase, and for low temperatures the value of ν = 1/2
for the collapsed phase. At the collapse point a transition
occurs and the exponent ν assumes a different value. In the lit-
erature one can find ν = 12/23 [21] and also ν = 1/2 with the
presence of logarithmic corrections [20] (this is different from
interacting self-avoiding walks, where the value νθ = 4/7 is
well established [23]). We can estimate the finite-size collapse
temperature and the corresponding exponent ν by locating
the crossing point in νn(ω) curves for different lengths. Note
that, while for the adsorption transition we considered the
crossing of exponent estimates from two different components
at the same length, here we consider the crossing of exponent
estimates of different lengths.

While for the adsorption transition we use 
n to find the
crossover exponent, in the collapse transition the quantity of
interest is the bulk specific heat per monomer:

cn(Tb) = (log w)2

n

(〈
m2

b

〉 − 〈mb〉2
)
. (16)

Around the collapse temperature a tricritical crossover
scaling form is expected. Assuming that in the thermodynamic
limit the specific heat diverges as c(Tb) ∼ |Tb − T (c)|−α , and
assuming that the tricritical scaling relation

2 − α = 1

φ(c)
(17)

holds, the finite-size specific heat cn(Tb) has the following
scaling:

cn(Tb) ∼ n2φ(c)−1 f (0)
c (Y )

[
1 + n−� f (1)

c (Y ) + · · · ], (18)

where Y = (Tb − T (c) )nφ(c)
. The exponent φ(c) is the crossover

exponent for the collapse transition.
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IV. NUMERICAL SIMULATIONS

We sample trail configurations using the flatPERM al-
gorithm [24]. This method is an extension of the pruned-
enriched Rosenbluth method (PERM) [25]. Both PERM and
flatPERM are stochastic growth algorithms based on the
Rosenbluth method; the addition of pruning and enrichment
allows one to overcome attrition and to efficiently sample
large configurations. PERM gives an estimate of the partition
function Zn for a specific temperature while flatPERM sam-
ples a flat histogram giving a good estimate of the density of
states, i.e., the number of configurations C(n)

ms,mb
.

We perform simulations for three different scenarios, (a)
a horizontal boundary with MS interactions, (b) a horizontal
boundary with BS interactions, and (c) a DS with monomer-
surface interactions. In all three scenarios we first run a two-
parameter flatPERM simulation. In this case the algorithm
samples a flat histogram in both ms and mb (as well as n
up to a maximal length) and estimates the full density of
states at these lengths, allowing us to construct a finite-size
approximation to the phase diagram.

The two-parameter flatPERM simulation produces a two-
dimensional density of states, and it is necessary to generate
sufficiently many samples for each box of the histogram.
Therefore this is only feasible for relatively short lengths.
For all three scenarios we perform a two-parameter flatPERM
simulation for trails with up to 128 steps with 1010 trails
reaching the maximum length. From these simulations we
can then determine the different phases and the approximate
location of phase boundaries.

To determine more precisely the location of and the behav-
ior around the phase boundaries we perform one-parameter
flatPERM simulations for fixed values of ω or κ and gen-
erating a one-dimensional density of states for ms or mb,
respectively. This allows for a more detailed analysis in
specific regions of the phase diagram. As we only need to
generate a one-dimensional density of states, we can perform
simulations for longer lengths than for the two-parameter
flatPERM simulations. We can generate trails with up to 1024
steps with 1010 trails reaching the maximum length for a wide
range of ω and κ .

As we want to pay particular attention to the normal and
the special surface transitions, we also perform PERM (i.e.,
zero-parameter flatPERM) simulations for all three scenarios,
as this allows us to perform simulations for much larger
lengths. We generate trails with length up to 10 240 steps with
an average sample of 5 × 108 trails at maximum length for
a set of fixed values of ω and κ . At these large lengths the
finite-size corrections to scaling are significantly smaller than
at shorter lengths, which allows for a more reliable estimate of
the adsorption exponents for both ordinary and special surface
transitions.

V. RESULTS

For all three scenarios we first generate a finite-size ap-
proximation to the phase diagram. Transition regions between
different phases are characterized by large fluctuations in the
number of bulk and surface interactions mb and ms. To identify
the regions of maximal fluctuations, it is advantageous to

consider the covariance matrix:[〈
m2

s

〉 − 〈ms〉2 〈msmb〉 − 〈ms〉〈mb〉
〈msmb〉 − 〈ms〉〈mb〉

〈
m2

b

〉 − 〈mb〉2

]
. (19)

The covariance matrix is positive semidefinite and its leading
eigenvalue is the greatest variance, with the corresponding
eigenvector representing the linear combination (in this case
of ms and mb) that gives rise to this variance. We produce
finite-size fluctuation maps by plotting the logarithm of this
eigenvalue as a function of ω and κ for trails with n = 128
steps.

In Fig. 2 the logarithm of the largest eigenvalue is shown
in a density plot as a function of ω and κ . As expected, in
each scenario we find three phases, which by considering
averages of ms and mb we identify with the coil, collapsed,
and adsorbed states of the trail.

Qualitatively, the phase diagrams in the three scenarios are
similar, and we therefore only discuss the MS case in detail,
which is shown in Fig. 2(a). For small values of ω and κ

we find configurations dominated by a small number ms of
surface contacts and a small number mb of double visited sites.
We therefore conclude that this region can be identified with
the swollen coil phase.

When increasing ω while keeping κ constant at a small
value (κ � 2) the number of double visited sites increases
through the region 2 < ω < 5 and gets saturated for large
ω, where the trail configurations are dominated by a large
number mb of double visited sites, which is a characteristic
of the collapsed phase in this model. We therefore conclude
that there is a collapse transition, which for short trail lengths
is smoothed out over a wide range.

For small values of κ , the average number ms of surface
contacts is small, and the trail remains desorbed, but for large
values of κ we find an adsorbed phase characterized by trail
configurations with a large number ms of surface contacts.
This phase exists for all values of ω, and we therefore have
a transition between the desorbed and adsorbed regime. The
transition between the desorbed phases and the adsorbed one
can occur in three different ways.

For small values of ω there is a weak transition between
the swollen coil and the adsorbed phase which is known as
the “normal surface transition,” and for large values of ω

there is a strong transition between the collapsed and the
adsorbed phase. For the latter transition we find a bimodal
density of states which is indicative of a first-order transition.
Between these two different transitions we expect to see
another adsorption transition when increasing κ along the line
of critical collapse. This transition is known as the “special
surface transition.” It occurs at a multicritical point at which
three transition lines meet: the normal surface and the coil-
collapsed and collapsed-adsorbed lines.

In order to estimate the location of the transitions and the
associated critical exponents we simulate configurations of
longer lengths by fixing either ω or κ , and use the following
procedure for the analysis of the data. For the adsorption
transition we choose a fixed value of ω and find the maximum
point (κn, max 
n) as a function of n, shown as small circles in
Fig. 3(a). We then use the asymptotic behavior of Eq. (13) to
find the value of the exponent 1/δn. By extrapolating these
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FIG. 2. Finite-size fluctuation map for 128-step trails for the three boundary cases MS, BS, and DS. Darker colors represent regions of
small fluctuations, while brighter colors (yellow and orange) represent regions with strong fluctuations.

values to large n we then estimate the final value of 1/δ.
As shown in [17,18], a good way to estimate the adsorption
point is to find the crossing points of the parallel and the per-
pendicular length scale exponents ν⊥/‖,n [Fig. 3(b)]. Finding
these points and using the scaling of Eq. (11) and the value
of 1/δ previously estimated, we locate the transition point
(ω(a), κ (a)). Knowing this adsorption point, we then calculate
the average number of surface contacts 〈ms〉 [Fig. 3(c)] at
(ω(a), κ (a)) as a function of n. As expected, 〈ms〉 grows linearly
in the adsorbed regime and tends to a constant in the desorbed
regime, while following a distinct power law growth with an
exponent around 0.5 at the adsorption transition. Similarly to
our method of estimating 1/δ we use Eqs. (5) and (10) to find
the finite-size values of φ(a)

n and then we extrapolate these
values to estimate the value of φ(a).

To characterize the collapse transition for a fixed value
of κ we first calculate the bulk specific heat per monomer
[Eq. (16)] as a function of ω. By looking at the maxima
[Fig. 3(d)] and using Eq. (18) we estimate the exponent φ(c).

To locate the collapse transition point we proceed similar
to the adsorption transition, but we consider crossing points
(ω(c)

n , ν (c)
n ) of the graphs of νn as a function of ω for two

lengths n and n + �n. Using the value of φ(c) we estimate
ω(c) by extrapolating from finite-size estimates ω(c)

n .
In the asymptotic estimation of the exponents above we

assume that the finite-size estimate ηn of an exponent η

asymptotically satisfies the ansatz:

ηn = η∞ + const n−0.5 + . . . . (20)

In most cases, this ansatz appears to fit our data reasonably
well, and changing the power in the correction-to-scaling term
slightly does not seem to affect our results.

For the MS case we applied this procedure to the results
of the one-parameter flatPERM simulation for trails with up
to 1024 steps in the range of 1 � κ � 3.5 and 1 � ω � 5. In
Fig. 4 the phase diagram for the MS case is shown.

On the square lattice, the collapse transition for trails
is expected to occur at ω(c) = 3 [20]. At this value, the
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FIG. 3. (a) Graphs of 
n as a function of κ for ω = 2. The black
circles denote the maximum points (κn, max 
n) of the 
n curves.
(b) Graphs of the length scale exponents ν⊥,n (solid line) and ν‖,n
(dashed line) as a function of κ for w = 3. The inset shows the
crossing points (black circles) of these exponents. (c) The average
number of contacts 〈ms〉 as a function of n for ω = 1 for five different
values of κ . (d) The bulk specific heat per monomer for κ = 1. The
inset shows the location of the maximum values of the bulk specific
heat as a function of the length n.

1 2 3 4 51

1.5

2

2.5

3

3.5

4

Coil
Collapsed

Adsorbed

FIG. 4. The phase diagram for the MS case. The red square is the
location of a multicritical point where the special surface transition
occurs. The solid lines are critical transitions, i.e., the coil-collapsed
transition and the normal surface transition. The dashed line is the
coexistence line of the collapsed-adsorbed transition.

probabilities of a stochastic growth process are perfectly
balanced by the Boltzmann weight ω(c). This has also been
confirmed numerically [21,22], where a value of 3.000(1) was
found. The presence of a weakly interacting surface is not
expected to have any effect on the location of this transition.
This is because desorbed trails have o(n) contacts with the
surface, so that the free energy of desorbed trails is expected
to be independent of the strength of the surface attraction.
Upon increasing the strength of the surface interaction κ ,
the collapse transition remains therefore at ω(c) = 3 until a
multicritical point is reached at κ = κ (s), where the special
surface transition takes place. Our simulation of interacting
trails in the presence of a noninteracting surface (i.e., κ = 1)
gives a value of ω(c) = 3.013(10) for the MS case, and values
very close to 3 were also found for the BS and the DS cases.
We further confirm that the location of the collapse transition
does not change upon increasing κ , as shown in Fig. 4.

Together with estimating the location of the collapse transi-
tion, we also obtain estimates of the length-scale exponent ν (c)

at collapse, as well as the collapse crossover exponent φ(c).
On the line ω = ω(c) at the values of κ indicated in Fig. 4,
we find 0.538 < ν (c) < 0.560 and φ(c) very close to 0.78.
The values found for ν match well with finite-size estimates
from the data presented in [20] at corresponding lengths when
assuming simple power law scaling. They are not close to
ν (c) = 12/23 reported in [21] or ν (c) = 1/2 found in [20], but
rather indicative of strong finite-size corrections to scaling at
the collapse transition. The value of the collapse crossover
exponent φ(c) is also not close to the expected φ(c) ≈ 0.88
[20], but mirrors what was found for similar lengths in [26],
again indicative of strong finite-size corrections.

We now turn to the discussion of the adsorption transition
in the three regimes. For fixed ω > 3, upon increasing κ we
find a collapsed-adsorbed transition with a bimodal behavior
in the density of states and an exponent α close to 1, which
is a clear indication of a first-order transition. For ω � 3 we
observe a critical adsorption transition upon increasing κ . The
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FIG. 5. Surface exponents as a function of the bulk interaction
parameter ω for trails with up to 10 240 steps. The red circles are the
values for the φ (a) and the black circles are the values for 1/δ. The
dashed line represents the expected value in two dimensions. (a) The
MS case. (b) The BS case. (c) The DS boundary scenario.

value of κ at which adsorption occurs changes monotonically
from 1.805(3) at ω = 1 [17] to 1.924(2) at ω = 3. For the
normal surface transition (ω < 3) the surface exponents 1/δ

and φ(a) are expected to be equivalent and equal to 1/2 in
two dimensions. For the special surface transition at ω = 3,
however, a different value is expected. For the DS case, the
value φ(s) ≈ 0.44 was found previously in [20], and for the
BS case values slightly lower were reported: 0.379 < φ(s) <

0.414 [22].
By performing simulations with PERM for trails with up

10 240 steps we estimate the values of 1/δ and φ(a) for the
normal and the special surface transition for all three boundary

1 320.2

0.3

0.4

0.5

0.6
n = 10240

n = 2048

FIG. 6. Surface exponents 1/δ and φ (a) as a function of ω for
the BS case for trails with 2048 and 10 240 steps. The black and
red circles are the values of 1/δ and φ (a), respectively, for trails with
2048 steps (lower symbols), and the blue and orange circles are the
values of 1/δ and φ (a), respectively, for trails with 10 240 steps (upper
symbols).

scenarios. For the normal surface transition we investigate the
four different values ω = 1.0, 1.5, 2.0, and 2.5 in detail. In
Fig. 5 our estimates of the surface exponents are shown as a
function of ω. In all cases our estimates satisfy 1/δ = φ(a)

within error bars, and also agree with the expected value
φ = 1/2 in two dimensions. We conclude that the normal
surface transition shows universal behavior as expected: the
standard scaling hypothesis predicting 1/δ = φ(a) = 1/2 is
correct in the presence of attractive bulk interactions and
different surface boundary conditions.

At this point we note that we find strong corrections to
scaling in the estimation of these exponents. Figure 6 shows
surface exponent estimates obtained for trails with 2048 and
10 240 steps for the BS case. While the exponent estimates
appear converged to the expected value of 1/2 for the longer
trails, there is a clear deviation for estimates from the shorter
trails. Importantly, error bars at shorter lengths are misleading
and would seem to support claims of nonuniversality. Similar
deviations are evident for the other two cases.

In the remainder of this section we discuss the special sur-
face transition in detail. As established above, the special tran-
sition occurs at ω = 3 in all three scenarios, albeit at different
values of κ (s). From an analysis of R2

⊥/‖,n, we find κ
(s)
(MS) =

1.924(2), κ
(s)
(BS) = 2.442(4), and κ

(s)
(DS) = 3.001(2). The latter

value confirms the expected exact value κ
(s)
(DS) = 3; similar to

the identification of ω(c) = 3, at this value the probabilities
of a stochastic growth process are perfectly balanced by the
Boltzmann weight κ (s)

(DS). There is no known exact value for the
other two cases. The BS case has been investigated previously
and a value κ

(s)
(BS) = 2.45(5) was found [22]. We are not aware

of any previous work regarding the value of κ
(s)
(MS).

We note that our estimates satisfy κ
(s)
(MS) < κ

(s)
(BS) < κ

(s)
(DS),

which make sense heuristically due to the density of contacts
in adsorbed configurations for each of the boundary scenarios.

While we have strong confirmation of universality for
the normal adsorption transition, our findings do not support
universality for the special transition. Intriguingly, we find
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FIG. 7. (a) The surface exponent φ (s) for different sizes as a
function of n−0.5 on the special surface point. Black circles are the
values for the MS case, red squares are those for the BS case, and
blue triangles are those for the DS case. The dashed black line is the
expected value of 0.44. (b) Exponent 1/δ(s) as a function of n−0.5 for
the boundary scenarios.

different exponent values depending on the boundary studied.
Figure 7 shows finite-size estimates of φ(s) (panel a) and 1/δ(s)

(panel b) for all three boundary scenarios. The estimates for
φ(s) seem to have no strong size dependence, and seem to con-
verge to three distinct values in the thermodynamic limit. We
estimate φ

(s)
(MS) = 0.338(17), φ

(s)
(BS) = 0.387(10), and φ

(s)
(DS) =

0.447(18), with the values for the DS and the BS cases
being in a good agreement with those found in [20,22]. The
estimates for 1/δ(s) show a stronger size dependence. We
find 1/δ

(s)
(MS) = 0.303(22), which is not too dissimilar from

φ
(s)
(MS) = 0.338(17), and 1/δ

(s)
(DS) = 0.449(22), which is in rea-

sonable agreement with φ
(s)
(DS) = 0.447(18). We could thus be

tempted to conclude that in both of these cases the equality
1/δ(s) = φ(s) holds, albeit with different exponent values.
However, we also find 1/δ

(s)
(BS) = 0.299(33), which does not

support this equality. Our findings are summarized in Table I.

TABLE I. Values found for the surface exponents 1/δ(s) and φ (s)

for the boundary scenarios at the special surface transition point.

Monomer surface Bond surface Diagonal surface

κ (s) 1.924(2) 2.442(4) 3.001(2)
φ (s) 0.338(17) 0.387(10) 0.447(18)
1/δ(s) 0.303(22) 0.299(33) 0.449(22)

1.4 1.6 1.8 2

0.0258

0.0264

C
n(

κ)
/n

2φ
 (c

)  -
 1

1024
2048

FIG. 8. Bulk specific heat per monomer normalized with
φ ≈ 0.78 as a function of κ for ω = 3 for the MS case. Two different
sizes are shown, 1024 steps (black curve) and 2048 steps (lighter red
curve).

These results do not support universality of the special
surface exponents. Neither can we confirm 1/δ(s) = φ(s), nor
does it seem that the exponent values are independent of the
details of the boundary.

It is important to notice that the estimate of φ(s) is highly
dependent on the precise location of the adsorption point, but
no such argument can be made for the method of estimating
1/δ(s). However, it is also important to highlight that the
presence of strong finite-size corrections seriously affects
exponent estimates for the ordinary surface transition, having
recently led to claims of nonuniversality in the case of self-
avoiding walks [10,16].

We also find evidence for strong finite-size corrections at
the special point. When looking more closely at the line of
critical collapse approaching the special adsorption transition,
we find two peaks in the bulk specific heat near the special
transition, as shown in Fig. 8 for the MS case. These two peaks
were only found in the MS and the BS scenarios. This could
be an indication of two neighboring phase transitions. These
two peaks persist in the vicinity of ω = ω(s), however one of
those peaks became weaker for longer lengths (2048), which
indicates that instead of a second phase transition we are
dealing with strong finite-size corrections. While we cannot
see the weakening of one of those peaks (or merging of both
peaks) near the special transition, we believe that this is likely
to happen for longer trails. With trails with up to 10 240 steps
it was not possible to resolve this question due to statistical
errors of the simulations, and we suggest that simulations with
even longer configurations have to be performed to understand
the precise nature of these finite-size corrections and how they
affect the estimates of the critical exponents.

VI. CONCLUSIONS

We performed simulations of the model of absorbing
interacting self-avoiding trails on the square lattice using
flatPERM, a uniform sampling stochastic growth algorithm.
We used a two-parameter version of flatPERM to sample
the density of states for trails with up 128 steps, and a one-
parameter version of flatPERM to sample trails with up to
1024 steps, going up to 2048 steps for specifically chosen
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values. We also performed PERM for trails with length up
to 10 240 steps. Three different scenarios for the surface
interaction were studied: MS interactions, BS interactions,
and monomer interactions at a DS.

By analyzing the fluctuation map for these three scenarios
we found similar phase diagrams with coil, collapsed, and
adsorbed phases. In all three scenarios the coil-collapsed
transition was found to occur at a constant line at ω = 3.
We also found evidence of a first-order transition between the
collapsed phase and the adsorbed phase.

The main focus of this paper was the analysis of adsorption
from the coil phase via the normal surface transition and of
adsorption from the bulk-critical phase via the special surface
transition.

We found for all three scenarios that the normal surface
transition occurs along a critical line. The estimated values
of the surface exponents 1/δ and φ(a) are both close to
the expected value of 1/2, showing that the normal surface
transition is universal for trails and that the relation φ(a) =
1/δ holds for different solvent conditions and different types
of boundary conditions. We point out that even for trails
with 2048 steps strong finite-size corrections led to exponent
estimates that indicated nonuniversality, and that we needed
to simulate consider considerably longer trails to observe the
actual exponent values.

These findings are relevant with regards to the recently
claimed nonuniversality of the adsorption transition for poly-
mers in the presence of bulk interactions [10,16]. This was
based on simulations of relatively short self-avoiding walks of
lengths up to 503 steps on the simple cubic lattice. A similar
variability of exponent estimates was found for self-avoiding
walks and trails in two and three dimensions for different
lattices and varying interaction strengths [17,18]. In the latter
works it was pointed out that different methods of analysis
resulted in significantly different exponent estimates for con-
figurations with steps up to length 1024, and that choosing
any single method of estimation leads to exponent estimates
with erroneously small error bars. The present paper indicates
that increasing the size of the configurations by an order of
magnitude is needed to go beyond finite-size correction terms
which are seemingly not captured by any of the methods used
in estimating the exponents.

When analyzing the special adsorption transition for ω =
3, we found critical behavior in all three scenarios. One of the
aims of the present paper was to investigate the discrepancy
between the previously reported values of φ(s) for the DS
and BS cases. Our estimates, summarized in Table I, do not
resolve this discrepancy. In addition, for the MS case we find
yet another value of φ(s). Moreover, our estimates of 1/δ(s)

deviate from the respective values of φ(s) with the exception
of the DS case, where we find good agreement within error
bars.

We would like to argue that the discrepancy between all
of these estimates is likely due to very strong finite-size
corrections to scaling around a higher-order critical point.
Support for this comes from the observation that near this
point we find two weak but clearly separated peaks in the
bulk-specific heat, which seem to weaken and move closer
to each other at longer lengths. This behavior is not captured
by our scaling assumptions, and hence one needs to either
amend these assumptions to capture this behavior or perform
simulations at even longer lengths than 10 240 steps to get
beyond these corrections to scaling.

We should like to point out the presence of confluent
logarithms in some thermodynamic quantities at the trail
collapse transition. For example, at the bulk collapse point
(in the absence of a boundary) the partition function scales
as 3n/ log n, the end-to-end distance grows as n1/2 log n [20],
and the collapse crossover exponent is extremely difficult to
determine, with the best estimate φ = 0.84(3) to date coming
from simulations using trails with over 2 × 106 steps [27].
While we have no explicit evidence of logarithmic corrections
for scaling at the special surface transition, they may well be
present and introduce additional complications.

As the simulations in [20] have been performed for 106

steps at the exact value κ (s) = 3, and as this is the only
scenario for which in the present paper we find agreement
between φ(s) and 1/δ(s), we assert that most likely the special
surface transition is universal and that the associated surface
exponent equals φ(s) = 1/δ(s) = 0.45(2). If there existed dif-
ferent sets of surface exponents for the special transition, then
one would have to still identify a mechanism that would be
capable of inducing this difference. We cannot discount this
completely, as collapsing trails have a length scale exponent
ν = 1/2(log), and in a scaling limit the lattice structure
near the boundary only becomes irrelevant if ν > 1/2. One
possible mechanism to cause a change, suggested to us by
Tiago José de Oliveira, is that for the horizontal boundary
long adsorbed segments of the trail in the surface suppress
interactions in the layer above, which is not the case for the
DS case. More work is needed to resolve this issue.
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