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Question 1 [36 marks]
For r ∈ R, consider the differential equation

ẋ = rx− 2x2 + x3 (1)

on the line.

(a) Show that x∗ = 0 is a fixed point for any value of the parameter r, and
determine its stability. Hence identify a bifurcation point r1. [8 marks]

(b) Show that for certain values of the parameter r there are additional fixed points.
For which values of r do these fixed points exist? Determine their stability and
identify a further bifurcation point r2. [12 marks]

(c) Using a Taylor expansion of (1), determine the normal form of the bifurcation
at r1. What type of bifurcation takes place. [6 marks]

(d) Similarly, determine the normal form of the bifurcation at r2. What type of
bifurcation takes place? [6 marks]

(e) Sketch the bifurcation diagram for all values of r and x∗. (Use a full line to
denote a curve of stable fixed points, and a dashed line for a curve of unstable
fixed points!) [4 marks]

Solution:

(a) We have ẋ = f(x) with f(x) = rx− 2x2 + x3. For fixed points f(x∗) = 0, and
clearly f(0) = 0, so x∗ = 0 is a fixed point for all real r. [2]

We compute f ′(x) = r − 4x + 3x2. Hence f ′(0) = r and 0 is stable for r < 0
and unstable for r > 0. [4]

Hence a bifurcation takes place at r1 = 0. [2]

(b) Additional fixed points are given by r − 2x + x2 = 0, which implies that there
are fixed points at 1±

√
1− r, provided r ≤ 1. [4]

We compute f ′(1±
√

1− r) = 2− 2r ± 2
√

1− r = 2
√

1− r(
√

1− r ± 1). [3]

Hence 1 +
√

1− r is stable for r < 1, and 1 −
√

1− r is stable for r < 0 and
unstable for 0 < r < 1. [3]

Thus r2 = 1 is another bifurcation point. [2]

(c) Near r = 0 we expand to leading order ẋ ≈ rx− 2x2. The substitution y = 2x
gives ẏ = ry − y2. [4]

This is the normal form of a transcritical bifurcation. [2]

(d) Near r = 1 we let r̃ = r− 1 and expand to leading order in y = x− 1. We find
ẏ ≈ r̃ + r̃y + y2. Neglecting the term r̃y we find ẏ = r + y2. [4]

This is the normal form of a saddle-node bifurcation. [2]

(e) A sketch of the bifurcation diagram: [4]
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Question 2 [34 marks]
Consider the dynamical system

ẋ =x2 − y − 1 (2)
ẏ =(x− 2)y

in the (x, y)-plane.

(a) Determine the nullclines of the system (2) amd find the fixed points. [10 marks]

(b) Give the Jacobian matrix. Hence, determine the linear stability of all fixed
points. [16 marks]

(c) Draw the nullclines of the system (2). Hence, sketch the phase portrait and
the flow for the system (2). Indicate the stable and unstable manifolds for any
saddles. [8 marks]

Solution:

(a) Note that ẋ = 0 implies y = x2 − 1, and that ẏ = 0 implies x = 2 or y = 0. [2]

Therefore the parabola y = x2−1 is the horizontal nullcline, and the line x = 2
and the x-axis are vertical nullclines. [2]

The horizontal and vertical nullclines intersect at the three fixed points (2, 3),
(−1, 0) and (1, 0). [6]

(b) The Jacobian matrix is
(

2x −1
y x− 2

)
. [4]

At the fixed point (2, 3) this reduces to
(

4 −1
3 0

)
, and thus the eigenvalues are

1 and 3. [2]

Hence the fixed point (2, 3) is an unstable node. [2]

At the fixed point (−1, 0) this reduces to
(
−2 −1
0 −3

)
, and thus the eigenvalues

are −2 and −3. [2]

Hence the fixed point (−1, 0) is a stable node. [2]
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At the fixed point (1, 0) this reduces to
(

2 −1
0 −1

)
, and thus the eigenvalues are

2 and −1. [2]

Hence the fixed point (1, 0) is a saddle. [2]

(c) A drawing of the nullclines [4]

indicating the flow directions [2]

and the stable and unstable manifolds of the saddle. [2]

Question 3 [30 marks]
Consider the system of differential equations

ẋ =y − xy2 (3)

ẏ =− x + yx2

in the (x, y)-plane.

(a) Define a symmetry transformation R by R(x, y) = (y, x). Show that the system
is reversible (i.e. invariant under (x, y)→ R(x, y), t→ −t). [6 marks]

(b) Show that there are invariant curves around the origin. [8 marks]

(c) Determine all fixed points of the system. [4 marks]

(d) Let r2 = x2 + y2. Show that ṙ = 0. Considering the result of (c), what does
this imply for the trajectories? [4 marks]

(e) Sketch the phase portrait in the (x, y)-plane, including trajectories through
(1, 0) and (2, 0). Which fixed point (if any) does the trajectory through (2, 0)
approach? [8 marks]

Solution:

(a) Under the transformation R, we find

ẏ =x− yx2

ẋ =− y + xy2 ,

which is equivalent to the original system upon changing t to −t. [4]

Hence the system is reversible. [2]
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(b) At the origin ẋ = 0 and ẏ = 0, hence the origin is a fixed point. [2]

The linearised map about this fixed point is ẋ = y and ẏ = −x, which is a
linear centre. [4]

As the system is reversible, the system has a non-linear centre at the origin.
Therefore there are closed curves around the origin. [2]

(c) Fixed points simultaneously satisfy 0 = y(1− xy) and 0 = −x(1− xy). [2]

Hence in addition to the origin there is a line of fixed points on the hyperbola
y = 1/x. [2]

(d) We compute directly 2rṙ = 2xẋ + 2yẏ = 0. So the trajectories lie on circles
around the origin. A trajectory therefore is either periodic or approaches a
fixed point on the hyperbola y = 1/x. [4]

(e) The trajectory starting at (1, 0) covers the whole circle of radius 1 in a clockwise
fashion (it starts in direction (0,−1). It is periodic. [2]

The trajectory starting at (2, 0) moves along the circle of radius 2 in a clockwise
fashion (it starts in direction (0,−2)). It approaches a fixed point for which
x2 + 1/x2 = 4. We find x = −

√
2−

√
3 and hence y = −

√
2 +

√
3. [2]

A sketch of phase portrait is as follows: [4]

End of Paper
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