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Question 1 [38 marks]
For r ∈ R, consider the differential equation

θ̇ = r cos(θ)− sin(2θ) , −π < θ ≤ π (1)

on the circle.

(a) Show that θ∗ = ±π/2 are fixed points for any value of the parameter r, and
determine their stability. Hence, show that both of these fixed points undergo
a bifurcation as r is varied. Find the bifurcation points r1 > 0 and r2 < 0 of
the fixed points. [8 marks]

(b) Show that the bifurcations give rise to fixed points that satisfy

sin(θ∗) =
r

2
. (2)

For which values of r do these fixed points exist? [6 marks]

(c) Determine the stability of the fixed points given by relation (2). [6 marks]

(d) Close to the bifurcation point r1, Taylor expand relation (2) to second order
in φ = θ − π/2 and derive an approximation for the fixed points as a function
of r below the bifurcation point (r ≤ r1). [6 marks]

(e) Using a Taylor expansion of (1) in φ = θ− π/2, determine the normal form of
the bifurcation at r1. What type of bifurcation takes place? [6 marks]

(f) A similar bifurcation takes place at r = r2. Sketch the bifurcation diagram for
all values of r and θ∗ (with −π < θ ≤ π). (Use a full line to denote stable fixed
points, and a dashed line for unstable fixed points!) [6 marks]

Question 2 [37 marks]
For r ∈ R, consider the dynamical system

ẋ =xy2 − rx (3)
ẏ =− xy − 2y

in the (x, y)-plane.

(a) Find the fixed points of (3) as a function of r. Identify a bifurcation point
and find the critical value rc of the parameter at which the bifurcation occurs.
(Make sure to carefully consider the case r = rc.) [12 marks]

(b) Give the Jacobian matrix of the dynamical system (3). Hence, determine the
linear stability of all fixed points for all values of r 6= rc. [16 marks]

(c) Using the eigenvalues and eigenvectors of the linearised system, sketch the flow
around the origin for r < rc and r > rc respectively. What happens near the
origin at rc (sketch and describe in words)? [9 marks]
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Question 3 [25 marks]
Consider the system of differential equations

ẋ =− x− 2y2 (4)

ẏ =xy − x2y

in the (x, y)-plane.

(a) Determine the nullclines of the system (4) and show that the system (4) has
only one fixed point (x∗, y∗). [8 marks]

(b) Show that V (x, y) = (x−x∗)2+a(y−y∗)2 is a Lyapunov function for a suitably
chosen value of a, and discuss the stability of the fixed point. [12 marks]

(c) Sketch the phase portrait of the system, clearly indicating nullclines and the
direction of the flow in the regions separated by nullclines. Sketch a typical
trajectory starting from a point x0 > 1, y0 > 0. [5 marks]

End of Paper
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