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Mid-Term Test 1

Question 1.

(a) State the formula for the Taylor polynomial Tn,a of degree n of a function f at a, and state
the Lagrange form of the remainder term Rn. [10 marks]

Let f(x) = 1/
√

1 + x.

(b) Determine the Taylor polynomials T2,0 and T3,0 of degree 2 and 3, respectively, for f at
a = 0. [15 marks]

(c) Using the Lagrange form of the remainder term, or otherwise, show that

T3,0(x) < f(x) < T2,0(x) for all x > 0 .

[10 marks]

Answer 1.

(a)

Tn,a(x) =

n∑

k=0

f (k)(a)

k!
(x − a)k and Rn =

f (n+1)(c)

(n + 1)!
(x − a)n+1 .

[5 marks each]

(b) From f(x) = (1 + x)−1/2 compute

f ′(x) = −
1

2
(1 + x)−3/2 , f ′′(x) =

3

4
(1 + x)−5/2 , f ′′′(x) = −

15

8
(1 + x)−7/2 .

Therefore f(0) = 1, f ′(0) = −1/2, f ′′(0) = 3/4, f ′′′(0) = −15/8, and [5 marks]

T2,0(x) = 1 −
1

2
x +

3

8
x2 , and T3,0(x) = 1 −

1

2
x +

3

8
x2 −

5

16
x3 .

[5 marks each]

(c) f(x) = T2,0(x) + R2 for some c ∈ (0, x), where

R2 =
−15/8(1 + c)−7/2

3!
x3 = −

5

16

x3

(1 + c)7/2
.

[5 marks]
As 0 < c < x, we find

−
5

16
x3 < R2 < 0

and therefore T3,0(x) < f(x) < T2,0(x). [5 marks]
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Answer 1. (Continue)
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Question 2.

(a) Give the definition of f : R → R being differentiable at a point a ∈ R. [10 marks]

(b) Let f : R → R satisfy

(i) f(x) = f(x − y)f(y) for all x, y ∈ R, and

(ii) f(x) − 1 = xg(x) with lim
x→0

g(x) = 1.

Show that f is differentiable and that f ′(a) = f(a) for all a ∈ R. [20 marks]

Answer 2.

(a) f is differentiable at a ∈ R if the limit

lim
x→a

f(x) − f(a)

x − a

exists. [10 marks]

(b) We compute

f ′(a) = lim
x→a

f(x) − f(a)

x − a
= lim

x→a

f(x − a)f(a) − f(a)

x − a
[property (i)]

= lim
x→a

f(a)(f(x − a) − 1)

x − a
= f(a) · lim

x→a

f(x − a) − 1

x − a
[limit laws]

=f(a) · lim
x→a

(x − a)g(x − a)

x − a
= f(a) · lim

x→a
g(x − a) [introduce g]

=f(a) · 1 = f(a) . [property (ii)]

Hence the limit lim
x→a

f(x)−f(a)
x−a

exists and is equal to f ′(a). [5 marks for each line]
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Answer 2. (Continue)
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Question 3.

(a) State Rolle’s Theorem. [15 marks]

(b) Let f : R → R be twice differentiable with

f(0) = f(1) = f(2) = 0 .

Show that there exists a c ∈ (0, 2) such that f ′′(c) = 0. [20 marks]

Answer 3.

(a) Rolle’s Theorem: Let f be continuous on [a, b] and differentiable on (a, b).

[5 marks]

If f(b) = f(a) (also correct: if f(b) = f(a) = 0) then there is a c ∈ (a, b)

[5 marks]

such that
f ′(c) = 0 .

[5 marks]

(b) (i) Apply Rolle’s Theorem to f on [0, 1]:

f is (twice) differentiable on R, hence continuous on [0, 1] and differentiable on (0, 1).
Thus, there exists a ∈ (0, 1) such that f ′(a)=0.

[5 marks]

(ii) Apply Rolle’s Theorem to f on [1, 2]:

f is (twice) differentiable on R, hence continuous on [1, 2] and differentiable on (1, 2).
Thus, there exists b ∈ (1, 2) such that f ′(b)=0.

[5 marks]

(iii) As a ∈ (0, 1) and b ∈ (1, 2), a < b and we can apply Rolle’s Theorem to f ′ on [a, b]:

f is twice differentiable on R, hence f ′ is continuous on [a, b] and differentiable on
(a, b). Thus, there exists c ∈ (a, b) such that f ′′(c)=0.

[10 marks]
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Answer 3. (Continue)


