

School of Mathematical Sciences Mile End, London E1 4NS · UK

Examiner: Dr T Prellberg

# MTH5105 Differential and Integral Analysis MID-TERM TEST

Date: 26-02-2010 Time: 12:10-12:50

# **Complete the following information:**

| Name           |  |
|----------------|--|
|                |  |
| Student Number |  |
| (9 digit code) |  |

The test has THREE questions. You should attempt ALL questions. Write your calculations and answers in the space provided. Cross out any work you do not wish to be marked.

| Question    | Marks |
|-------------|-------|
| 1           |       |
| 2           |       |
| 3           |       |
| Total Marks |       |
|             |       |

Nothing on this page will be marked!

Nothing on this page will be marked!

### Question 1.

(a) State the formula for the Taylor polynomial  $T_{n,a}$  of degree n of a function f at a, and state the Lagrange form of the remainder term  $R_n$ . [10 marks]

Let  $f(x) = 1/\sqrt{1+x}$ .

- (b) Determine the Taylor polynomials  $T_{2,0}$  and  $T_{3,0}$  of degree 2 and 3, respectively, for f at a = 0. [15 marks]
- (c) Using the Lagrange form of the remainder term, or otherwise, show that

$$T_{3,0}(x) < f(x) < T_{2,0}(x)$$
 for all  $x > 0$ .

[10 marks]

## Answer 1.

(a)

$$T_{n,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} \quad \text{and} \quad R_n = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} .$$
[5 marks each]

(b) From  $f(x) = (1+x)^{-1/2}$  compute

$$f'(x) = -\frac{1}{2}(1+x)^{-3/2}$$
,  $f''(x) = \frac{3}{4}(1+x)^{-5/2}$ ,  $f'''(x) = -\frac{15}{8}(1+x)^{-7/2}$ .

Therefore f(0) = 1, f'(0) = -1/2, f''(0) = 3/4, f'''(0) = -15/8, and [5 marks]  $T_{2,0}(x) = 1 - \frac{1}{2}x + \frac{3}{8}x^2$ , and  $T_{3,0}(x) = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3$ .

[5 marks each]

(c)  $f(x) = T_{2,0}(x) + R_2$  for some  $c \in (0, x)$ , where

$$R_2 = \frac{-15/8(1+c)^{-7/2}}{3!}x^3 = -\frac{5}{16}\frac{x^3}{(1+c)^{7/2}}.$$

[5 marks]

As 0 < c < x, we find

$$-\frac{5}{16}x^3 < R_2 < 0$$

and therefore  $T_{3,0}(x) < f(x) < T_{2,0}(x)$ .

[5 marks]

Answer 1. (Continue)

### Question 2.

- (a) Give the definition of  $f : \mathbb{R} \to \mathbb{R}$  being differentiable at a point  $a \in \mathbb{R}$ . [10 marks]
- (b) Let  $f : \mathbb{R} \to \mathbb{R}$  satisfy
  - (i) f(x) = f(x y)f(y) for all  $x, y \in \mathbb{R}$ , and
  - (ii) f(x) 1 = xg(x) with  $\lim_{x \to 0} g(x) = 1$ .

Show that f is differentiable and that f'(a) = f(a) for all  $a \in \mathbb{R}$ . [20 marks]

## Answer 2.

(a) f is differentiable at  $a \in \mathbb{R}$  if the limit

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists.

(b) We compute

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{f(x - a)f(a) - f(a)}{x - a}$$
 [property (i)]  
$$= \lim_{x \to a} \frac{f(a)(f(x - a) - 1)}{x - a} = f(a) \cdot \lim_{x \to a} \frac{f(x - a) - 1}{x - a}$$
 [limit laws]  
$$= f(a) \cdot \lim_{x \to a} \frac{(x - a)g(x - a)}{x - a} = f(a) \cdot \lim_{x \to a} g(x - a)$$
 [introduce g]  
$$= f(a) \cdot 1 = f(a) .$$
 [property (ii)]

Hence the limit  $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$  exists and is equal to f'(a). [5 marks for each line]

[10 marks]

Answer 2. (Continue)

#### Question 3.

- (a) State Rolle's Theorem.
- (b) Let  $f : \mathbb{R} \to \mathbb{R}$  be twice differentiable with

$$f(0) = f(1) = f(2) = 0$$

Show that there exists a  $c \in (0, 2)$  such that f''(c) = 0. [20 marks]

### Answer 3.

(a) Rolle's Theorem: Let f be continuous on [a, b] and differentiable on (a, b).

[5 marks]

[5 marks]

If 
$$f(b) = f(a)$$
 (also correct: if  $f(b) = f(a) = 0$ ) then there is a  $c \in (a, b)$ 

such that

$$f'(c) = 0 .$$

[5 marks]

(b) (i) Apply Rolle's Theorem to f on [0, 1]: f is (twice) differentiable on  $\mathbb{R}$ , hence continuous on [0, 1] and differentiable on (0, 1). Thus, there exists  $a \in (0, 1)$  such that f'(a)=0.

[5 marks]

(ii) Apply Rolle's Theorem to f on [1, 2]: f is (twice) differentiable on  $\mathbb{R}$ , hence continuous on [1, 2] and differentiable on (1, 2). Thus, there exists  $b \in (1, 2)$  such that f'(b)=0.

[5 marks]

(iii) As  $a \in (0, 1)$  and  $b \in (1, 2)$ , a < b and we can apply Rolle's Theorem to f' on [a, b]: f is twice differentiable on  $\mathbb{R}$ , hence f' is continuous on [a, b] and differentiable on (a, b). Thus, there exists  $c \in (a, b)$  such that f''(c)=0.

[10 marks]

[15 marks]

Answer 3. (Continue)