MTH5105 Differential and Integral Analysis 2008-2009

Midterm Test

Problem 1: Let $f(x)=1 / x$.
(a) Determine the Taylor polynomials $T_{3,1}$ and $T_{4,1}$ of degree 3 and 4 at $a=1$ for f.
[15 marks]
(b) Using the Lagrange form of the remainder, or otherwise, show that

$$
T_{3,1}(x)<f(x)<T_{4,1}(x) \text { for all } x>1
$$

[15 marks]
Solution: (a) $f(x)=1 / x, f^{\prime}(x)=-1 / x^{2}, f^{\prime \prime}(x)=2 / x^{3}, f^{\prime \prime \prime}(x)=-6 / x^{4}, f^{(4)}(x)=$ $24 / x^{5}$, and therefore $f(1)=1, f^{\prime}(1)=-1, f^{\prime \prime}(1)=2, f^{\prime \prime \prime}(1)=-6$, $f^{(4)}(1)=24$.
[5 marks]
Hence

$$
\begin{aligned}
T_{3,1}(x) & =\frac{1}{0!} 1+\frac{(-1)}{1!}(x-1)+\frac{2}{2!}(x-1)^{2}+\frac{(-6)}{3!}(x-1)^{3} \\
& =1-(x-1)+(x-1)^{2}-(x-1)^{3} \\
T_{4,1}(x) & =\frac{1}{0!} 1+\frac{(-1)}{1!}(x-1)+\frac{2}{2!}(x-1)^{2}+\frac{(-6)}{3!}(x-1)^{3}+\frac{24}{4!}(x-1)^{4} \\
& =1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4} .
\end{aligned}
$$

[5 marks each]
(b) For $x>1$ there is a $c \in(1, x)$
such that

$$
f(x)=T_{3,1}(x)+\frac{24 / c^{5}}{4!}(x-1)^{4}=T_{3,1}(x)+(x-1)^{4} / c^{5} .
$$

[5 marks]
But as $c>1$, we have $(x-1)^{4} / c^{5}<(x-1)^{4}$, and thus

$$
T_{3,1}(x)<1 / x<T_{4,1}(x) .
$$

Problem 2: (a) Give the definition of $f: \mathbb{R} \rightarrow \mathbb{R}$ being differentiable at a point $a \in \mathbb{R}$.
[10 marks]
(b) Using the definition, determine whether or not

$$
f(x)= \begin{cases}\frac{x}{1+\exp (1 / x)} & x \neq 0 \\ 0 & x=0\end{cases}
$$

is differentiable at $x=0$. (For this you may wish to consider the left and right derivatives of $f(x)$ at $x=0$.) Find $f^{\prime}(0)$, if it exists. [20 marks]

Solution: (a) f is differentiable at $a \in \mathbb{R}$ if the limit

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists.
[10 marks]
(b) We need to consider

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{1}{1+\exp (1 / x)}
$$

[5 marks]
But as $\lim _{t \rightarrow \infty} \exp (-t)=0$ we have

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{1+\exp (1 / x)}=\lim _{t \rightarrow \infty} \frac{1}{1+\exp (t)}=\lim _{t \rightarrow \infty} \frac{\exp (-t)}{\exp (-t)+1}=0
$$

[5 marks]
and

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{1+\exp (1 / x)}=\lim _{t \rightarrow \infty} \frac{1}{1+\exp (-t)}=1
$$

As the left and right limits disagree, the limit

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}
$$

does not exist. Thus f is not differentiable at 0 and $f^{\prime}(0)$ does not exist.
[5 marks]

Problem 3: (a) State the Mean Value Theorem.
(b) Show that for all $x, y \in \mathbb{R}$

$$
|\sin (y)-\sin (x)| \leq|y-x| .
$$

[25 marks]
You may assume standard properties of trigonometric functions.
Solution: (a) MVT: Let f be continuous on $[a, b]$ and differentiable on (a, b).
[5 marks]
Then there is a $c \in(a, b)$
[5 marks]
such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

(c) Consider three cases: (a) $x<y$, (b) $x=y$, and (c) $x>y$. For $x=y$ the conclusion is true, and (c) follows from (a) by exchanging x and y. So we only need to consider $x<y$.
[5 marks]
Let $x<y$ and apply the MVT to $f(x)=\sin (x)$ on $[x, y]$.
[5 marks]
There is a $c \in(x, y)$ such that

$$
\cos (c)=\frac{\sin (y)-\sin (x)}{y-x} .
$$

[5 marks]
But $|\cos (c)| \leq 1$, so that

$$
1 \geq\left|\frac{\sin (y)-\sin (x)}{y-x}\right|
$$

Therefore $|\sin (y)-\sin (x)| \leq|y-x|$.

