MTH5105 Differential and Integral Analysis 2008-2009

Sample Test

Problem 1: (a) Give the definition of $f: \mathbb{R} \rightarrow \mathbb{R}$ being differentiable at a point $c \in \mathbb{R}$.
[10 marks]
(b) Show directly from the definition that $f(x)=\frac{1}{x}$ is differentiable at any point c with $c \neq 0$, and find $f^{\prime}(c)$.
[10 marks]
(c) Suppose that f is continuous at 0 . Show that the function g defined by $g(x)=x f(x)$ is differentiable at 0 at find its derivative. [10 marks]

Solution: (a) f is differentiable at $c \in \mathbb{R}$ if the limit

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

exists.
(b)

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c} \frac{1 / x-1 / c}{x-c}=\lim _{x \rightarrow c}\left(-\frac{1}{x c}\right)=-\frac{1}{c^{2}}
$$

Thus f is differentiable at $c \neq 0$ and $f^{\prime}(c)=-\frac{1}{c^{2}}$.
(c)

$$
\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x f(x)}{x}=\lim _{x \rightarrow 0} f(x)=f(0)
$$

since f is continuous at 0 . Thus g is differentiable at 0 and $g^{\prime}(0)=f(0)$.

Problem 2: (a) State Rolle's Theorem.
(b) State the Mean Value Theorem and prove it using Rolle's Theorem.
[20 marks]
(c) Let f be continuous on $[a, b]$ and differentiable on (a, b). Suppose there exists a real constant M such that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in(a, b)$. Show that for all $x, y \in[a, b]$

$$
|f(x)-f(y)| \leq M|x-y|
$$

[10 marks]
Solution: (a) Rolle's Theorem: Let f be continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)=0$, then there is a $c \in(a, b)$ such that $f^{\prime}(c)=0$.
(b) MVT: Let f be continuous on $[a, b]$ and differentiable on (a, b). Then there is a $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof: Let $h(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)$. Then h satisfies the assumptions of Rolle's Theorem (h continuous on $[a, b]$ and differentiable on $(a, b), h(a)=h(b)=0)$ so that there is a $c \in(a, b)$ such that $h^{\prime}(c)=0$. Therefore

$$
0=h^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a} .
$$

(c) Fix $x, y \in[a, b]$.

Case 1: $x<y$. By the MVT there is a $c \in(x, y)$ such that

$$
f^{\prime}(c)=\frac{f(y)-f(x)}{y-x}
$$

Hence $|f(y)-f(x)|=\left|f^{\prime}(c)\right||x-y| \leq M|x-y|$.
Case 2: $x>y$. Analogous to Case 1.
Case 3: $x=y .|f(x)-f(x)| \leq M|x-x|$ is true.

Problem 3: (a) Let $f(x)=\log (1+x)$.
(i) Determine the Taylor polynomials $T_{2,0}$ and $T_{3,0}$ of degree 2 and 3 at 0 for f.
[15 marks]
(ii) Using the Lagrange form of the remainder, or otherwise, show that

$$
T_{2,0}(x) \leq f(x) \leq T_{3,0}(x) \quad \text { for all } x \geq 0
$$

[15 marks]
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be infinitely differentiable. Which of the following two statements (if any) is true?
(i) 'The Taylor series of f always converges for at least one point.'
(ii) 'The Taylor series of f always converges to the function for at least two points.'
[10 marks]
Solution: (a) $f(x)=\log (1+x), f^{\prime}(x)=1 /(1+x), f^{\prime \prime}(x)=-1 /(1+x)^{2}, f^{\prime \prime \prime}(x)=$ $2 /(1+x)^{3}$.
(i) $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=-1, f^{\prime \prime \prime}(0)=2$, and hence

$$
\begin{aligned}
& T_{2,0}(x)=\frac{1}{1!} x+\frac{(-1)}{2!} x^{2}=x-\frac{x^{2}}{2} \\
& T_{3,0}(x)=\frac{1}{1!} x+\frac{(-1)}{2!} x^{2}+\frac{2}{3!} x^{3}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3} .
\end{aligned}
$$

(ii) For $x>0$ there is a $c \in(0, x)$ such that

$$
f(x)=T_{2,0}(x)+\frac{2 /(1+c)^{3}}{3!} x^{3}
$$

But $0<\frac{2 /(1+c)^{3}}{3!} x^{3}<\frac{x^{3}}{3}$, so that

$$
T_{2,0}(x)<f(x)<T_{3,0}(x)
$$

For $x=0$ we have $T_{2,0}(0)=f(0)=T_{3,0}(0)$, so that for all $x \geq 0$

$$
T_{2,0}(x) \leq f(x) \leq T_{3,0}(x)
$$

(b) (i) True: the Taylor series always converges for $x=0$.
(ii) False: the Taylor series of

$$
f(x)= \begin{cases}0 & x=0 \\ \exp \left(-1 / x^{2}\right) & x \neq 0\end{cases}
$$

does not converge to $f(x)$ for $x \neq 0$.

