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Question 1 Suppose that f: [0,1] — R is continuously differentiable.
(a) Show that there is some number M such that |f'(z)] < M for all .

(b) Using the Mean Value Theorem, or otherwise, prove that
[f(x) = f(y)] < Mz -y
for all z,y € [0,1].

[You may use any theorems from the course provided that they are stated clearly.]
[25 marks]

Question 2 (a) State the Fundamental Theorem of Calculus. Use it to prove the
integration by parts formula

You should state what conditions v and v should.satisfy (e.g., continuity, dif-
ferentiability etc.)

(b) Suppose that f: R — R is continuous. Using the chain rule, or otherwise, show
that the function F' defined by

F(z) = exp ( /0 ) dt>

is differentiable and find its derivative.
[25 marks]

Question 3 Let f: R — R be defined"by f(x) = cos(z + 7/3). Find the Taylor
Polynomial T3 o(z) of degree three for f«Find the remainder term (in the Lagrange
Form) and deduce that |f(z) — T30(z)| < /24 for all x.

Hence, show that
1 1
/ flx)dx — / T30(x)dx
0 0

Question 4 Let f: [0,7] —/R be defined by f(x) = vsinz.
(a) Why do we know that f is integrable on [0, 7]?

< 1/120.

[25 marks]

(b) By considering the lower sum for the partition z¢g = 0,21 = 7/6, x2 = 57/6,
x3 = m, or otherwise, prove that wa f>2r/3.

(c) Is the function F(z) = [; f continuous? [Justification is not required]

(d) Deduce that there is some number ¢ € (0,7) such that [ f = 1.
[25 marks]
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