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Question 1 (a) Let a, x ∈ R with a < x. Let the real-valued function f be
n times continuously differentiable on [a, x] and (n + 1) times continuously
differentiable on (a, x).

(i) Write down the n-th Taylor polynomial Tn,a of f at a, and write down
both integral and Lagrange forms of the remainder

Rn,a = f − Tn,a .

(ii) Find the Taylor polynomial T2,1 of f at a = 1 for

f(x) = (1 + 2x)−1/2 ,

and find both integral and Lagrange forms of the remainder R2,1.

(b) Let g(x) = log(1− x).

(i) Write down the Taylor series at zero for g.

(ii) By factorising 1−x4, or otherwise, determine the Taylor series at zero for
f(x) = log(1 + x + x2 + x3) up to order x7.

[25 marks]

Question 2 Suppose that the function f : [0, 1] → R is decreasing.

(a) State why
∫ 1
0 f(x) dx exists.

(b) Given the partition Pn = {0, 1
n , 2

n , . . . , n
n} of [0, 1], find the upper and lower

sums U(f, Pn) and L(f, Pn).

(c) Let

Sn =
1
n

(
f

(
1
n

)
+ f

(
2
n

)
+ . . . + f

(n

n

))
.

Prove that

Sn ≤
∫ 1

0
f(x) dx ≤ Sn +

1
n

(f(0)− f(1)) .

Hence deduce that Sn →
∫ 1
0 f(x) dx as n →∞.

(d) By considering the function f(x) = (2 + x)−2, prove that

n

(
1

(2n + 1)2
+

1
(2n + 2)2

+ . . . +
1

(3n)2

)
→ 1

6

as n →∞.
[25 marks]
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Question 3 We say that a real-valued function f defined on an interval I is Lipschitz
if there is a constant M such that

|f(x)− f(y)| ≤ M |x− y|

for all x and y in I.

(a) State the Boundedness Principle and the Mean Value Theorem.

(b) By using the Boundedness Principle and the Mean Value Theorem, or other-
wise, prove that every continuously differentiable function on [0, 1] is Lipschitz.

(c) What does it mean to say that a real-valued function f defined on an interval
I is uniformly continuous?

(d) Show that a Lipschitz function is uniformly continuous.
[25 marks]

Question 4 For m ∈ N, define fm : R → R by

fm(x) =
x

m2 + x2
.

(a) Show that for all x ∈ R, the sum
∑∞

m=1 fm(x) converges.

(b) Show that the sum
∑∞

m=1 f ′m(x) converges uniformly for all x ∈ R.
[Hint: |m2 − x2| ≤ m2 + x2]

(c) Deduce that f : R → R defined by

f(x) =
∞∑

m=1

x

m2 + x2

is differentiable. What is f ′(x)?
[25 marks]
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