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Question 1 Let f : [0, π/2] → R be given by

f(x) =
∫ x

0

√
cos t dt .

(a) Determine f ′(x). Justify your answer.

(b) Find the Taylor polynomial T2,0(x) for f at zero.

(c) What is the remainder term R2? Using the fact that |f (3)(c)| < 1 for all
c ∈ (0, 1/10), show that |R2| < 1/6000 for x = 1/10.

(d) Deduce that

1/10− 1/6000 <

∫ 1/10

0

√
cos t dt < 1/10 + 1/6000 .

[25 marks]

Question 2 Define f : [−2, 2] → R by

f(x) =

{
x2 x 6∈ Q
0 x ∈ Q .

(a) Prove that f is differentiable at the point a = 0 and determine f ′(0).

(b) Suppose P is a partition of [1, 2].

(i) Show that L(f, P ) = 0.

(ii) Show that U(f, P ) ≥ 1.

(iii) Deduce that
∫ 2
1 f(x) dx does not exist.

(c) Does
∫ 2
−2 f(x) dx exist?

[25 marks]

Question 3 Let f : R → R be differentiable. Suppose that |f ′(x)| ≤ 1 for all x ∈ R,
and that a, b ∈ R.

(a) Using the Mean Value Theorem, or otherwise, prove that |f(b)−f(a)| ≤ |b−a|.

(b) Using the previous part prove that f is uniformly continuous.

(c) Give an example of a function g : R → R that is differentiable but not uniformly
continuous. [Justification is not required.]

[25 marks]
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Question 4 (a) Show that for all x ∈ R, the sum
∑∞

k=1
1
k sin

(
x
k

)
converges.

[You may use that | sin(t)| ≤ |t| for all t ∈ R.]

(b) Show that the sum
∑∞

k=1
1
k2 cos

(
x
k

)
converges uniformly for all x ∈ R.

(c) Deduce that f : R → R defined by

f(x) =
∞∑

k=1

1
k

sin
(x

k

)
is differentiable.

[25 marks]

End of Paper

c© Queen Mary, University of London (2009)


