MAS115 Calculus I 2007-2008

Problem sheet for exercise class 9

- Make sure you attend the excercise class that you have been assigned to!
- Try to work on the problems first on your own. If you are stuck, ask for hints.
- The instructor and helper will be available for questions.
- Solutions will be available online by Friday.

Problem 1: Making a simplifying substitution. Evaluate

$$
\int_{0}^{\sqrt{\ln 2}} 2 x e^{x^{2}} d x
$$

Problem 2: Completing the square. Evaluate

$$
\int \frac{d \theta}{\sqrt{2 \theta-\theta^{2}}}
$$

Problem 3: Using a trigonometric identity. Evaluate

$$
\int(\sin 3 x \cos 2 x-\cos 3 x \sin 2 x) d x .
$$

Problem 4: Eliminating a square root. Evaluate

$$
\int_{-\pi}^{0} \sqrt{1-\cos ^{2} \theta} d \theta
$$

Problem 5: Reducing an improper fraction. Evaluate

$$
\int_{\sqrt{2}}^{3} \frac{2 x^{3}}{x^{2}-1} d x
$$

Problem 6: Separating a fraction. Evaluate

$$
\int \frac{1-x}{\sqrt{1-x^{2}}} d x
$$

Problem 7: Multiplying by 1. Evaluate

$$
\int \frac{1}{1+\sin x} d x
$$

Prize Question: The best correct solution submitted to me on or before December 10 will be rewarded with a cash prize. Evaluate

$$
\int_{0}^{1} \frac{x}{\sqrt{2 \pi \alpha^{3}(1-\alpha)}} \exp \left(-\frac{x^{2}}{2 \alpha(1-\alpha)}\right) d \alpha
$$

Problem 1:

$\int_{0}^{\sqrt{\ln 2}} 2 \mathrm{xe}^{\mathrm{x}^{2}} \mathrm{dx} ;\left[\begin{array}{c}\mathrm{u}=\mathrm{x}^{2} \\ \mathrm{du}=2 \mathrm{xdx} \\ \mathrm{x}=0 \Rightarrow \mathrm{u}=0, \mathrm{x}=\sqrt{\ln 2} \Rightarrow \mathrm{u}=\ln 2\end{array}\right] \rightarrow \int_{0}^{\ln 2} \mathrm{e}^{\mathrm{u}} \mathrm{du}=\left[\mathrm{e}^{\mathrm{u}}\right]_{0}^{\ln 2}=\mathrm{e}^{\ln 2}-\mathrm{e}^{0}=2-1=1$
Problem 2:
$\int \frac{d \theta}{\sqrt{2 \theta-\theta^{2}}}=\int \frac{d \theta}{\sqrt{1-(\theta-1)^{2}}} ;\left[\begin{array}{c}u=\theta-1 \\ d u=d \theta\end{array}\right] \rightarrow \int \frac{d u}{\sqrt{1-u^{2}}}=\sin ^{-1} u+C=\sin ^{-1}(\theta-1)+C$

Problem 3:

$\int(\sin 3 x \cos 2 x-\cos 3 x \sin 2 x) d x=\int \sin (3 x-2 x) d x=\int \sin x d x=-\cos x+C$

Problem 4:

$\int_{-\pi}^{0} \sqrt{1-\cos ^{2} \theta} \mathrm{~d} \theta=\int_{-\pi}^{0}|\sin \theta| \mathrm{d} \theta ;\left[\begin{array}{c}\sin \theta \leq 0 \\ \text { for }-\pi \leq \theta \leq 0\end{array}\right] \rightarrow \int_{-\pi}^{0}-\sin \theta \mathrm{d} \theta=[\cos \theta]_{-\pi}^{0}=\cos 0-\cos (-\pi)$ $=1-(-1)=2$

Problem 5:

$\int_{\sqrt{2}}^{3} \frac{2 x^{3}}{x^{2}-1} d x=\int_{\sqrt{2}}^{3}\left(2 x+\frac{2 x}{x^{2}-1}\right) d x=\left[x^{2}+\ln \left|x^{2}-1\right|\right]_{\sqrt{2}}^{3}=(9+\ln 8)-(2+\ln 1)=7+\ln 8$
Problem 6:

$$
\int \frac{1-x}{\sqrt{1-x^{2}}} d x=\int \frac{d x}{\sqrt{1-x^{2}}}-\int \frac{x d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+\sqrt{1-x^{2}}+C
$$

Problem 7:

$\int \frac{d x}{1+\sin x}=\int \frac{(1-\sin x)}{\left(1-\sin ^{2} x\right)} d x=\int \frac{(1-\sin x)}{\cos ^{2} x} d x=\int\left(\sec ^{2} x-\sec x \tan x\right) d x=\tan x-\sec x+C$

