MAS115 Calculus I 2007-2008

Problem sheet for exercise class 7

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problems in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online by Friday.

Problem 1:(*) a. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1^{5}+2^{5}+3^{5}+\ldots+n^{5}}{n^{6}}
$$

by showing that the limit is

$$
\int_{0}^{1} x^{5} d x
$$

and evaluating the integral.
b. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1^{3}+2^{3}+3^{3}+\ldots+n^{3}}{n^{4}}
$$

Problem 2: Which formula is not equivalent to the other two?
a. $\sum_{j=2}^{4} \frac{(-1)^{j-1}}{j-1}$
b. $\sum_{k=0}^{2} \frac{(-1)^{k}}{k+1}$
c. $\sum_{l=-1}^{1} \frac{(-1)^{l}}{l+2}$

Problem 3: L'Hopital's rule does not help with the following limits. Find them some other way:
a. $\lim _{x \rightarrow \infty} \frac{\sqrt{x+5}}{\sqrt{x}+5}$
b. $\lim _{x \rightarrow \infty} \frac{2 x}{x+7 \sqrt{x}}$

Extra: Let $f(x), g(x)$ be two continuously differentiable functions satisfying the relationships $f^{\prime}(x)=g(x)$ and $f^{\prime \prime}(x)=-f(x)$. Let $h(x)=f^{2}(x)+g^{2}(x)$. If $h(0)=5$, fing $h(10)$.

Problem 1:

a.

Let $f(x)=x^{5}$ on $[0,1]$. Partition [0,1] into n subintervals with $\Delta x=\frac{1-0}{n}=\frac{1}{n}$. Then $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}$ are the right-hand endpoints of the subintervals. Since f is increasing on $[0,1], U=\sum_{j=1}^{\infty}\left(\frac{j}{n}\right)^{5}\left(\frac{1}{n}\right)$ is the upper sum for $f(x)=x^{5}$ on $[0,1] \Rightarrow \lim _{n \rightarrow \infty} \sum_{j=1}^{\infty}\left(\frac{i}{n}\right)^{5}\left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(\frac{1}{n}\right)^{5}+\left(\frac{2}{n}\right)^{5}+\ldots+\left(\frac{n}{n}\right)^{5}\right]=\lim _{n \rightarrow \infty}\left[\frac{1^{5}+2^{5}+\ldots+n^{5}}{n^{6}}\right]$ $=\int_{0}^{1} x^{5} d x=\left[\frac{x^{6}}{6}\right]_{0}^{1}=\frac{1}{6}$
b.

Let $f(x)=x^{3}$ on $[0,1]$. Partition $[0,1]$ into n subintervals with $\Delta x=\frac{1-0}{n}=\frac{1}{n}$. Then $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}$ are the right-hand endpoints of the subintervals. Since f is increasing on $[0,1], U=\sum_{j=1}^{\infty}\left(\frac{j}{n}\right)^{3}\left(\frac{1}{n}\right)$ is the upper sum for

$$
\begin{aligned}
& f(x)=x^{3} \text { on }[0,1] \Rightarrow \lim _{n \rightarrow \infty} \sum_{j=1}^{\infty}\left(\frac{j}{n}\right)^{3}\left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n}\left\lceil\left(\frac{1}{n}\right)^{3}+\left(\frac{2}{n}\right)^{3}+\ldots+\left(\frac{n}{n}\right)^{3}\right\rceil=\lim _{n \rightarrow \infty}\left\lceil\frac{1^{3}+2^{3}+\ldots+n^{3}}{n^{4}}\right\rceil \\
& =\int_{0}^{1} x^{3} d x=\left\lceil\frac{x^{4}}{4}\right]_{0}^{1}=\frac{1}{4}
\end{aligned}
$$

Problem 2:

(a) $\sum_{\mathrm{k}=2}^{4} \frac{(-1)^{\mathrm{k}-1}}{\mathrm{k}-1}=\frac{(-1)^{2-1}}{2-1}+\frac{(-1)^{3-1}}{3-1}+\frac{(-1)^{4-1}}{4-1}=-1+\frac{1}{2}-\frac{1}{3}$
(b) $\sum_{\mathrm{k}=0}^{2} \frac{(-1)^{\mathrm{k}}}{\mathrm{k}+1}=\frac{(-1)^{0}}{0+1}+\frac{(-1)^{1}}{1+1}+\frac{(-1)^{2}}{2+1}=1-\frac{1}{2}+\frac{1}{3}$
(c) $\sum_{\mathrm{k}=-1}^{1} \frac{(-1)^{\mathrm{k}}}{\mathrm{k}+2}=\frac{(-1)^{-1}}{-1+2}+\frac{(-1)^{0}}{0+2}+\frac{(-1)^{1}}{1+2}=-1+\frac{1}{2}-\frac{1}{3}$
(a) and (c) are equivalent; (b) is not equivalent to the other two.

Problem 3:

(a) $\lim _{x \rightarrow \infty} \frac{\sqrt{x+5}}{\sqrt{x}+5}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{x+5}}{\sqrt{x}}}{\frac{\sqrt{x}+5}{\sqrt{x}}}=\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{5}{x}}}{1+\frac{5}{\sqrt{x}}}=\frac{1}{1}=1$
(b) $\lim _{x \rightarrow \infty} \frac{2 x}{x+7 \sqrt{x}}=\lim _{x \rightarrow \infty} \frac{\frac{2 x}{x}}{\frac{x+7 \sqrt{x}}{x}}=\lim _{x \rightarrow \infty} \frac{2}{1+7 \sqrt{\frac{1}{x}}}=\frac{2}{1+0}=2$

Extra:

$h(x)=f^{2}(x)+g^{2}(x) \Rightarrow h^{\prime}(x)=2 f(x) f^{\prime}(x)+2 g(x) g^{\prime}(x)=2\left[f(x) f^{\prime}(x)+g(x) g^{\prime}(x)\right]=2[f(x) g(x)+g(x)(-f(x))]$ $=2 \cdot 0=0$. Thus $h(x)=c$, a constant. Since $h(0)=5, h(x)=5$ for all x in the domain of h. Thus $h(10)=5$.

