MAS115 Calculus I 2007-2008

Problem sheet for exercise class 3

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problems in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online by Friday.
- (*) Problem 1: **Two wrong statements about limits.** Show by example that the following statements are wrong.
 - (a) The number L is the limit of f(x) as x approaches x_0 if f(x) gets closer to L as x approaches x_0 .
 - (b) The number L is the limit of f(x) as x approaches x_0 if, given any $\epsilon > 0$, there exists a value of x for which $|f(x) L| < \epsilon$.

Explain why the functions in your examples do not have the given value of L as a limit as $x \to x_0$.

Problem 2: Compute the following limits:

[2007 exam questions]

(a)
$$\lim_{x\to 9} \frac{x-9}{\sqrt{x+7}-4}$$
, (b) $\lim_{u\to 3} \frac{u^3-27}{u^4-81}$, (c) $\lim_{x\to 0} \frac{6x+6x\cos(6x)}{\sin(6x)\cos(6x)}$.

Problem 3: Use the graph of the greatest integer function $y = \lfloor x \rfloor$ to determine the limits

(a)
$$\lim_{\theta \to 3^+} \frac{\lfloor \theta \rfloor}{\theta}$$
, $\lim_{\theta \to 3^-} \frac{\lfloor \theta \rfloor}{\theta}$, (b) $\lim_{t \to 4^+} (t - \lfloor t \rfloor)$, $\lim_{t \to 4^-} (t - \lfloor t \rfloor)$.

Extra: Roots of a quadratic equation that is almost linear. The equation $ax^2 + 2x - 1 = 0$, where a is a constant, has two roots if a > -1 and $a \neq 0$, one positive and one negative:

$$r_{+}(a) = \frac{-1 + \sqrt{1+a}}{a}$$
, $r_{-}(a) = \frac{-1 - \sqrt{1+a}}{a}$.

- (a) What happens to $r_+(a)$ as $a \to 0$? As $a \to -1^+$?
- (b) What happens to $r_{-}(a)$ as $a \to 0$? As $a \to -1^{+}$?
- (c) Support your conclusions by graphing $r_{+}(a)$ and $r_{-}(a)$ as functions of a. Describe what you see.

Let $f(x) = x^2$. The function values do get closer to -1 as x approaches 0, but $\lim_{x \to 0} f(x) = 0$, not -1. The function $f(x) = x^2$ never gets <u>arbitrarily close</u> to -1 for x near 0.

(6)

Let $f(x) = \sin x$, $L = \frac{1}{2}$, and $x_0 = 0$. There exists a value of x (namely, $x = \frac{\pi}{6}$) for which $\left|\sin x - \frac{1}{2}\right| < \epsilon$ for any given $\epsilon > 0$. However, $\lim_{x \to 0} \sin x = 0$, not $\frac{1}{2}$. The wrong statement does not require x to be arbitrarily close to x_0 . As another example, let $g(x) = \sin \frac{1}{x}$, $L = \frac{1}{2}$, and $x_0 = 0$. We can choose infinitely many values of x near 0 such that $\sin\frac{1}{x}=\frac{1}{2}$ as you can see from the accompanying figure. However, $\lim_{x\to 0}\sin\frac{1}{x}$ fails to exist. The wrong statement does not require <u>all</u> values of x arbitrarily close to $x_0 = 0$ to lie within $\epsilon > 0$ of $L = \frac{1}{2}$. Again you can see from the figure that there are also infinitely many values of x near 0 such that $\sin \frac{1}{x} = 0$. If we choose $\epsilon < \frac{1}{4}$ we cannot satisfy the inequality $\left|\sin\frac{1}{x} - \frac{1}{2}\right| < \epsilon$ for all values of x sufficiently near $x_0 = 0$.

Problem 3

(a)
$$\lim_{\theta \to 3^+} \frac{[\theta]}{\theta} = \frac{3}{3} = 1$$

$$\lim_{\theta \to 3^{-}} \frac{|\theta|}{\theta} = \frac{2}{3}$$

(b)
$$\lim_{t\to 4^+} (t-[t]) = 4-4=0$$

$$\lim_{t \to 4} (t - \lfloor t \rfloor) = 4 - 3 = 1$$

(a) At
$$x = 0$$
: $\lim_{a \to 0} r_{+}(a) = \lim_{a \to 0} \frac{-1 + \sqrt{1+a}}{a} = \lim_{a \to 0} \left(\frac{-1 + \sqrt{1+a}}{a}\right) \left(\frac{-1 - \sqrt{1+a}}{a-1 - \sqrt{1+a}}\right)$

$$= \lim_{a \to 0} \frac{1 - (1+a)}{a(-1 - \sqrt{1+a})} = \frac{-1}{-1 - \sqrt{1+0}} = \frac{1}{2}$$

At x = -1: $\lim_{a \to -1^+} r_-(a) = \lim_{a \to -1^+} \frac{-1 - \sqrt{1 + a}}{a} = \lim_{a \to -1^+} \frac{-1}{-1 + \sqrt{1 + a}} = 1$

Problem 2

(a)
$$\times -9$$
 $\times -9$ $\times -$

$$= \lim_{x \to 9} \frac{(x-9)((x-7+4))}{x+7-16} = \lim_{x \to 9} ((x-7+4))$$

(b)
$$\lim_{u\to 3} \frac{u^3-27}{u^4-81} = \lim_{u\to 3} \frac{(u-3)(u^2+3u+9)}{(u-3)(u^3+3u^3)(u^3+3u^3)}$$

$$= \lim_{u \to 2} \frac{u^2 + 3u + 9}{u^3 + 3u^2 + 9u + 72} = \frac{3^2 + 3 \cdot 3 + 9}{3^3 + 3 \cdot 3^2 + 9 \cdot 3 \cdot 3 \cdot 27}$$

$$= \frac{1+\cos 0}{1\cdot\cos 0} = 2 \quad \left(\cos d : \lim_{t \to 0} \frac{SMt}{t} = 1 \right)$$