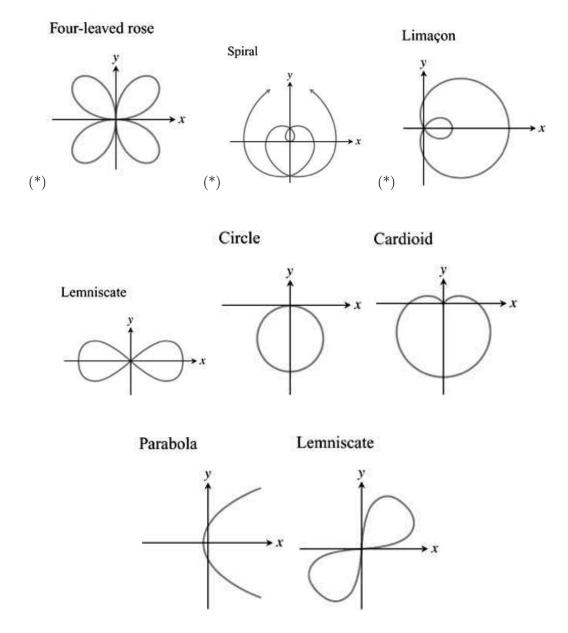
MAS115 Calculus I 2007-2008

Problem sheet for exercise class 10



a.	$r = \cos 2\theta$,	b.	$r\cos\theta = 1$,	c.	$r = \frac{6}{1 - 2\cos\theta} \; ,$
d.	$r = \sin 2\theta$,		$r = \theta$,		$1 - 2\cos\theta$ $r^2 = \cos 2\theta ,$
g.	$r = 1 + \cos\theta \; ,$		$r = 1 - \sin \theta \; ,$	i.	$r = \frac{2}{1 - \cos\theta} \; ,$
j.	_		$r = -\sin\theta \; ,$		$1 - \cos \theta$ $r = 2\cos \theta + 1.$

Problem 2: Show that the equations $x = r \cos \theta$, $y = r \sin \theta$ transform the polar equation

$$r = \frac{k}{1 + e\cos\theta}$$

into the Cartesian equation

$$(1 - e^2)x^2 + y^2 + 2kex - k^2 = 0.$$

Problem 3: Find polar equations for the following four circles. Sketch each circle in the coordinate plane and label it with both its Cartesian and polar equations.

a.
$$x^2 + y^2 + 5y = 0$$
,
b. $x^2 + y^2 - 2y = 0$,
c. $x^2 + y^2 - 3x = 0$,
d. $x^2 + y^2 + 4x = 0$.

Extra: Show that if you roll a circle of radius a about another circle of radius a in the polar coordinate plane, the original point of contact P will trace a cardioid. (Hint: start by showing that $\angle OBC$ and $\angle PAD$ are equal to each other.)

