MAS115 Calculus I 2007-2008

Problem sheet for exercise class 10

Problem 1: Match each of the eight graphs with one of the following equations.
a. $\quad r=\cos 2 \theta$,
b. $r \cos \theta=1$,
c. $r=\frac{6}{1-2 \cos \theta}$,
d. $r=\sin 2 \theta$,
e. $r=\theta$,
f. $r^{2}=\cos 2 \theta$,
g. $\quad r=1+\cos \theta$,
h. $r=1-\sin \theta$,
i. $r=\frac{2}{1-\cos \theta}$,
j. $r^{2}=\sin 2 \theta$,
k. $r=-\sin \theta$,

1. $r=2 \cos \theta+1$.

Problem 2: Show that the equations $x=r \cos \theta, y=r \sin \theta$ transform the polar equation

$$
r=\frac{k}{1+e \cos \theta}
$$

into the Cartesian equation

$$
\left(1-e^{2}\right) x^{2}+y^{2}+2 k e x-k^{2}=0 .
$$

Problem 3: Find polar equations for the following four circles. Sketch each circle in the coordinate plane and label it with both its Cartesian and polar equations.
a. $x^{2}+y^{2}+5 y=0$,
b. $x^{2}+y^{2}-2 y=0$,
c. $x^{2}+y^{2}-3 x=0$,
d. $x^{2}+y^{2}+4 x=0$.

Extra: Show that if you roll a circle of radius a about another circle of radius a in the polar coordinate plane, the original point of contact P will trace a cardioid. (Hint: start by showing that $\angle O B C$ and $\angle P A D$ are equal to each other.)

Rolling circle

