Correspondence and Rigidity Results on Asymptotically Anti-de Sitter Spacetimes

Arick Shao

Queen Mary University of London

International Conference on Nonlinear Waves and General Relativity
14 December, 2017
The Chinese University of Hong Kong

Joint work with G. Holzegel (Imperial College London)
Section 1

Introduction
Introduction

Physical Motivations

Correspondence Principles

Outstanding problem in theoretical physics:

- Reconciling *Einstein’s theory of gravity* with *quantum field theories*.

Influential research direction:

- **AdS/CFT correspondence**
- (AdS: Anti-de Sitter)
- (CFT: Conformal field theory)

AdS/CFT \(\Rightarrow \) holographic principle:

- Gravitational theory on spacetime encoded in some theory on its boundary (of one less dimension).

Original paper*:

- 12154 12201 12381 12869 13156 13278 citations.

† Data from http://inspirehep.net/record/451647/citations.
In AdS context, little rigorous mathematics for:

- Positive statements of this principle.
- Precise formulations of this principle.

In particular, in dynamical (non-static) settings.

Main (long-term) questions:

1. Can rigorous statements toward holographic correspondences be formulated?
2. Can these statements be proved?
3. Can one understand the mechanisms behind such a correspondence?
Gravity described by Einstein’s theory of general relativity.

- **Spacetime**: \((n + 1)\)-dimensional *Lorentzian manifold* \((M, g)\).
- \(g\): *Lorentzian metric*, with *signature* \((-++, \ldots, +)\).
- Gravity modelled by *curvature* of \((M, g)\).

Gravity and matter coupled via the **Einstein equations**:

\[
\text{Ric}_g \frac{1}{2} \text{Sc}_g g + \Lambda g = T.
\]

- No matter \((T \equiv 0) \Rightarrow \text{Einstein-vacuum equations (EVE)}:

\[
\text{Ric}_g = \frac{2\Lambda}{n-1} g.
\]
Anti-de Sitter (AdS) spacetime:
- Maximally symmetric solution of EVE...
- ... with negative cosmological constant $\Lambda = \frac{-n(n-1)}{2}$.
- Lorentzian analogue of hyperbolic space.

Globally represented as $(\mathbb{R}_t \times \mathbb{R}_x^n, g)$, with
\[g := (1 + r^2)^{-1}dr^2 - (1 + r^2)dt^2 + r^2 \gamma. \]
- $r > 0, \omega \in \mathbb{S}^{n-1}$: Polar coordinates on \mathbb{R}^n.
- γ: Round metric for unit sphere \mathbb{S}^{n-1}.

Maximally symmetric solution of EVE...
Consider “inverted radius” $\rho := r^{-1}$:

$$g = \rho^{-2} \left[(1 + \rho^2)^{-1} d\rho^2 - (1 + \rho^2) dt^2 + \gamma \right].$$

- $\rho^2 g$ smooth at $\rho = 0$ ($r = \infty$).

ρ is a boundary defining function.

- Conformal boundary $\mathcal{J} := \{\rho = 0\}$ of AdS:

$$\mathcal{J} \simeq \mathbb{R}_t \times S^{n-1}, \tilde{g} := -dt^2 + \gamma.$$

Asymptotically AdS (aAdS):

- Spacetime with “similar conformal boundary”.
Introduction

The Main Question

The Correspondence Question

Question (0’)

Is there some correspondence between:

- aAdS solution of EVE ("gravitational dynamics").
- Data prescribed at conformal boundary \mathcal{I}.
 - (Ideally: boundary metric, stress-energy tensor.)

Attempt 1: Formulate this in terms of PDEs:

- Given: "Cauchy" data on conformal boundary \mathcal{J}.
- Question: Solve for unique solution of EVE in interior?
Ill-Posedness

Bad news: This problem is generally ill-posed.

- AdS \approx cylinder in Minkowski spacetime:

 $$C := \{(t, x) \in \mathbb{R}^{1+n} \mid |x| < 1\}.$$

- EVE \approx wave equation.

- Wave equations ill-posed with Cauchy data on C.

For EVE to be well-posed, one requires:

- Initial data at $t = 0$.

- Dirichlet or Neumann data on I.

The cylinder C.

AdS cylinder in Minkowski spacetime:
A Unique Continuation Problem

Attempt 2: Formulate as unique continuation problem for PDEs.

- If a solution exists, then must it be unique?

Question (0)

Suppose two aAdS solutions of the EVE have the same “boundary-Cauchy” data on their conformal boundaries. Then, must these solutions be isometric?

- Is there a one-to-one correspondence between aAdS solutions of EVE and some space of “boundary-Cauchy” data?
Consider a model problem:

- Wave equation on fixed AdS/aAdS spacetime.

Question (1)

\[(\Box_g + \sigma)\phi = G(\phi, \nabla\phi), \quad \sigma \in \mathbb{R}. \]

If \(\phi_1, \phi_2 \) have same **Dirichlet and Neumann data on the boundary** \(\mathcal{J} \), then is \(\phi_1 = \phi_2 \) **locally near** \(\mathcal{J} \)?

- **\(G \) linear**: \(\phi = 0 \) at \(\mathcal{J} \) \(\Rightarrow \) \(\phi = 0 \) near \(\mathcal{J} \)?
Why the Wave Equation?

Question (1): essential step toward Question (0).

- Wave equation: first linearization of EVE.
- EVE \rightarrow curvature satisfies nonlinear wave equation.

Question (1) also has applications to rigidity results.

Remark. Why $\square + \sigma$, not \square?

- σ determines asymptotics of ϕ near I.
Section 2

Results on AdS Spacetime
Some Intuition

Consider: \((\Box_g + \sigma)\phi = 0\).

- (Over)assume \(\phi\) depends only on \(\rho\) \(\Rightarrow\) 2nd-order ODE for \(\phi\).
- Frobenius method \(\Rightarrow\) two branches of solutions:

\[
\phi_\pm = \rho^{\beta_\pm} \sum_{k=0}^{\infty} a_k \rho^k, \quad \beta_\pm = \frac{n}{2} \pm \sqrt{\frac{n^2}{4} - \sigma}.
\]

- (Breitenlohner–Freedman)

Thus, for \(\phi\) to vanish, we must eliminate both branches:

\[
\rho^{-\beta_+} \phi \to 0, \quad \rho \searrow 0.
\]

Q. Is this condition sufficient in general?

(A. Almost, for physically relevant \(\sigma\).)
The Main Theorem

Theorem (Holzegel–S.; 2015)

Suppose ϕ is a C^2-solution of

$$|(\Box_g + \sigma)\phi| \leq \rho^{2+p}(|\partial_t \phi| + |\partial_\rho \phi| + |\nabla_{S^2} \phi|) + \rho^p|\phi|,$$

where $\sigma \in \mathbb{R}$ and $p > 0$. Assume the vanishing condition

$$|\rho^{-\beta} + \phi| + |\nabla_{t,\rho,S^2} (\rho^{-\beta} + 1) \phi| \to 0, \quad \text{if } \sigma \leq \frac{n^2 - 1}{4} \left(\beta_+ \geq \frac{n + 1}{2} \right),$$

$$|\rho^{-\frac{n+1}{2}} \phi| + |\nabla_{t,\rho,S^2} (\rho^{-\frac{n-1}{2}} \phi)| \to 0, \quad \text{if } \sigma \geq \frac{n^2 - 1}{4} \left(\beta_+ \leq \frac{n + 1}{2} \right),$$

as $\rho \searrow 0$, on a sufficiently large time interval

$$t \in [0, t_0], \quad t_0 > \pi.$$

Then, ϕ vanishes in the interior of AdS, near $J \cap \{0 < t < t_0\}$.
Some Remarks

1. First such correspondence result in dynamical, non-analytic setting.

2. The **sufficiently large time interval assumption** is new.
 - Clearly necessary for *global* uniqueness.
 - Surprisingly, seems necessary even for *local* uniqueness.

3. **Vanishing condition** optimal when $\sigma \leq \frac{n^2 - 1}{4}$.
 - $\sigma = \frac{n^2 - 1}{4}$: conformal mass.
 - **Q.** (Open) Can we do better for $\sigma > \frac{n^2 - 1}{4}$?

4. Result also holds for (appropriately defined) tensor waves.
 - Useful for future applications to EVE.
Theorem (Holzegel–S.; 2015)

On pure AdS, main theorem extends to global uniqueness result.

- Can show ϕ vanishes on all of $\{0 < t < t_0\}$.

Theorem (Holzegel–S.; 2015)

When well-posedness theory* exists for $\square_g + \sigma$:

- For ϕ with finite (twisted) H^2-energy...
- ... if ϕ has vanishing Dirichlet and Neumann data on $J \cap \{0 < t < t_0\}$...
- ... then $\phi = 0$ near $J \cap \{0 < t < t_0\}$.

* See (Warnick; 2013).
Pose as \textbf{unique continuation (UC) problem:}

\begin{itemize}
 \item \textbf{Problem (Unique Continuation)}
 \begin{align*}
 \Box_g \phi - a^\alpha \nabla_\alpha \phi - V\phi &= 0. \\
 \text{If } \phi, d\phi \text{ vanish on a hypersurface } \Sigma, \ldots \\
 \ldots \text{then must } \phi \text{ vanish on one side of } \Sigma?
 \end{align*}
\end{itemize}

In our context: \(\Sigma = I \).
Analytic, linear wave equations:
- Holmgren’s theorem \Rightarrow UC
- Assuming analyticity is too strong

Non-analytic: Crucial criterion is pseudoconvexity.
- (Hörmander, Lerner–Robbiano) $\Sigma := \{f = 0\}$ pseudoconvex \Rightarrow UC, Σ to $\{f > 0\}$.
 - Purely local result (neighborhood of $p \in \Sigma$).
- (Alinhac, Alinhac–Baouendi) Σ not pseudoconvex \Rightarrow ...
 - ... then $\exists a^\alpha, V$ for which UC from Σ to $\{f > 0\}$ does not hold.
Pseudoconvexity

Definition

\[\Sigma := \{ f = 0 \} \text{ is pseudoconvex (w.r.t. } \Box_g \text{ and } \text{sgn } f) \leftrightarrow \ldots \]

- \(-f \) is convex in tangent null directions to \(\Sigma \).

Rough interpretation:

- Any null geodesic hitting \(\Sigma \) tangentially...
- ... will lie in \(\{ f < 0 \} \) nearby.

Definition

\(\Sigma \) is zero pseudoconvex \(\Leftrightarrow \) \(\Sigma \) is ruled by null geodesics.
Examples: Zero Pseudoconvexity

Zero pseudoconvex case is complicated:

- Depends on geometry of spacetime near Σ.
- Result may be local, semi-global, or global.

1. (Global) $\Sigma = \text{timelike hyperplane in } \mathbb{R}^{n+1}$:
 - No local UC (Alinhac–Baouendi).
 - Global UC from all of Σ (Kenig–Ruiz–Sogge).

2. (Semi-global) $\Sigma = \text{null infinity of } \mathbb{R}^{n+1}$:
 - UC from $>\frac{1}{2}$ of \mathcal{J}^{\pm} (Alexakis–Schlue–S.).

3. (Local) $\Sigma = \text{null infinity of Schwarzschild}$:
 - UC from \mathcal{J}^{\pm} near t^0 (Alexakis–Schlue–S.).
The Conformal Boundary

Bad news: The AdS conformal boundary \mathcal{I} is zero pseudoconvex.

OK news: Cylinders $\{\rho = \rho_0\}$, $\rho_0 > 0$, are (inward) pseudoconvex.

- \Rightarrow UC from \mathcal{I} inward, provided ϕ decays as $t \to \pm\infty$.
- (Since region $\{0 < \rho < \rho_0\}$ has boundary $t = \pm\infty$.)

Question

Can we “bend” the hypersurfaces $\{\rho = \rho_0\}$ back toward \mathcal{I}, so that:

1. They remain pseudoconvex.
2. They intersect \mathcal{I} after a finite time interval.
A Pseudoconvex Foliation

Fix $y > 0$, and consider level sets of

$$f := \frac{\rho}{\sin(yt)}, \quad 0 < t < y^{-1}\pi.$$

\[\text{Lemma} \]

If $y < 1$, then $\{f = f_0\}$ is pseudoconvex for $f_0 \ll 1$.

- \Rightarrow Time interval $[0, t_0 := y^{-1}\pi]$ has length $> \pi$.
- \Rightarrow “sufficiently long time interval assumption”.

Level sets of f.

Time interval $[0, t_0 := y^{-1}\pi]$ has length $> \pi$.

"sufficiently long time interval assumption".
Carleman Estimates

Main analysis tool for UC: Carleman estimates.

- Weighted spacetime integral estimate with free parameter.
- Pseudoconvexity + Carleman estimate + standard argument \Rightarrow UC.

Carleman estimate roughly of the form

$$\|w_{\lambda,f}(\Box g + \sigma)\phi\|_{L^2(f<f_0)}^2 \gtrsim \lambda \|w_{\lambda,f}\nabla\phi\|_{L^2(f<f_0)}^2 + \lambda^3 \|w_{\lambda,f}\phi\|_{L^2(f<f_0)}^2.$$

- $\lambda \gg 1$: free chosen constant.
- $w_{\lambda,f}$: weight depending on f, λ.

Some technical difficulties:

1. Zero pseudoconvexity \Rightarrow dealing with degenerating weights.
2. Infinite domains \Rightarrow infinite volume \Rightarrow integrability issues.
Short Time Intervals

Conjecture

UC does not generally hold if $t_0 < \pi$.

Special property of AdS geometry:

- ∃ family of future null geodesics from $I \cap \{t = 0\}$...
- ... *which refocus at* $I \cap \{t = \pi\}$.

Idea: Counterexamples via geometric optics.

- Similar to (Alinhac–Baouendi).
- Solutions concentrated near such a geodesic...
- ... arbitrarily close to zero data for ϕ.
Section 3

Results on aAdS Spacetimes
Main goal: UC problem for the EVE.

- *For EVE, the geometry itself is the unknown.*
- Results on AdS spacetime must be robust.
- Methods must apply to general aAdS spacetimes.

(Holzegel–S.; 2015) aAdS spacetimes with static conformal boundary.

- In context of solving the EVE (as initial-boundary problem)...
- ... one also encounters non-static conformal boundaries.
Definition of aAdS

Step 1: Construction of conformal boundary and spacetime.
- **Conformal boundary:** $J := \mathbb{R}_t \times S$.
 - S: $(n - 1)$-dimensional manifold—cross-section of J.
- **Spacetime** (near boundary): $\mathcal{M} := (0, \rho_0)_\rho \times J$.

Step 2: Construction of aAdS metric.
- Adopt **Fefferman–Graham (FG)** gauge.
- Expand remaining (t, S)-components of g about J.
 \[
g = \rho^{-2}\{d\rho^2 + [\tilde{g}_{ab} + \bar{g}_{ab}\rho^2 + O(\rho^3)]dx^a dx^b}\].
- **Conformal boundary:** (J, \hat{g}).
Features of Construction

1. Allow general boundary topology and geometry: (\mathcal{J}, \bar{g}).
 - *Example:* Can consider planar AdS.

2. No loss of generality in choosing FG gauge.
 - Can change coordinates from more general gauge to FG...

3. For *Einstein-vacuum* spacetimes in FG gauge:
 - EVE connects \bar{g} to geometry of conformal boundary.
 - $-\bar{g}$ is precisely the *Schouten tensor* \hat{P} for (\mathcal{J}, \hat{g}).
Results on aAdS Spacetimes

Extending Unique Continuation

The Pseudoconvexity Criterion

Question

Do the previous results on AdS extend to aAdS spacetimes?

- In particular, can we still find pseudoconvexity near I?

Lemma (Pseudoconvexity Criterion)

Suppose the following conditions hold:

1. $-\bar{g}$ satisfies a (pseudo-)positivity condition:

 $$-\bar{g} - \zeta \bar{g} \geq c > 0$$

 for some function ζ.

2. $|\mathcal{L}_{\partial_t} \bar{g}|$ is sufficiently small (depending on \bar{g}).

Then, there is a pseudoconvex foliation near I...

- ... spanning a sufficiently long time interval on I.

An Additional Difficulty

Previous choice of $f := \rho / \sin(yt)$ generally fails.

\[\sin(yt) \] shows up in AdS computations as solution of

\[\psi'' + y^2 \psi = 0. \]

- aAdS setting: Nonzero $L_{\partial_t} \tilde{g} \Rightarrow$ extra ψ'-term.
- Idea: Replace $\sin(yt)$ by function ψ resembling damped oscillator.

Lemma

Assuming the pseudoconvexity criterion:

- For an appropriate ψ, the level sets of $f := \rho / \psi$ are pseudoconvex for $f \ll 1$.

The Main Theorem

Theorem (Holzegel–S.; 2016)

Let \((\mathcal{M}, g)\) be an aAdS spacetime satisfying the pseudoconvexity criterion. Suppose \(\phi\) is a \(C^2\)-solution of

\[
|\Box_g + \sigma|\phi| \leq \rho^{2+p}|\partial_t \phi| + |\partial_\rho \phi| + |\nabla_{S^2} \phi| + \rho^p|\phi|,
\]

where \(\sigma \in \mathbb{R}\) and \(p > 0\), and suppose that

\[
|\rho^{-\beta} + \phi| + |\nabla_{t,\rho,S^2}(\rho^{-\beta} + 1 \phi)| \to 0, \quad \text{if } \sigma \leq \frac{n^2 - 1}{4},
\]

\[
|\rho^{-\frac{n+1}{2}} \phi| + |\nabla_{t,\rho,S^2}(\rho^{-\frac{n+1}{2}} \phi)| \to 0, \quad \text{if } \sigma \geq \frac{n^2 - 1}{4},
\]

as \(\rho \searrow 0\), on a sufficiently large time interval \(0 \leq t \leq t_0\). Then, \(\phi\) vanishes in the interior of AdS, near \(J \cap \{0 < t < t_0\}\).
Some Remarks

Pseudoconvexity criterion directly connects:
- Pseudoconvexity (and hence UC)
- Asymptotics on conformal boundary ($\mathcal{L}_{\partial_t} \bar{g}$ and \bar{g}).

For vacuum spacetimes:
- $\mathring{R}ic(v, v) \geq c > 0$ for null v.
- Static boundary: positive Ricci curvature on S.

Many, but not all, well-known aAdS spacetimes satisfy this criterion.
- AdS, Schwarzschild-AdS, and Kerr-AdS.
- Planar AdS ($\mathbb{R} \times S^{n-1} \rightarrow \mathbb{R} \times \mathbb{R}^{n-1}$) fails the criterion.
Some More Remarks

How to interpret the pseudoconvexity criterion?

\[-\bar{g} - \zeta \bar{g} \geq c > 0.\]

- Consider the truncated metric
 \[\tilde{g} = \rho^{-2}[d\rho^2 + (\hat{g}_{ab} + \bar{g}_{ab}\rho^2)dx^a dx^b].\]

- If pseudoconvexity criterion holds, then...
 - \(\tilde{g}\)-null geodesics from \(\mathcal{I}\) remaining close to \(\mathcal{I}\)...
 - ... will return to \(\mathcal{I}\) within some time \(t_0\).

The pseudoconvexity criterion is gauge-dependent.

- Not invariant under change of \(\rho\).
- \((\text{Work in progress})\) Is there a gauge-independent statement?
- \((\text{Work in progress})\) Or, is there an “optimal” gauge?
Applications to Vacuum Spacetimes

1. **Linearised EVE**: (Holzegel–S.; 2015) applies to *linearised* EVE about AdS.

2. **Rigidity of AdS**: If the Weyl curvature W vanishes at I, ...
 - ... then the spacetime must be pure AdS.

3. **Rigidity of Kerr-AdS**: Is there an analogous result?

4. **Extension of symmetry**: Given (appropriately defined) symmetry of (J, \hat{g}):
 - Can it be extended to the spacetime?

5. **Correspondence for EVE**: (Original question)
The Vacuum Setting

Assume FG expansion for (vacuum) g:

$$\rho^2 g = d\rho^2 + [g^{(0)}_{ab} + g^{(2)}_{ab} \rho^2 + \cdots + g^{(n)}_{ab} \rho^n + O(\rho^{n+1})] dx^a dx^b.$$

- $g^{(0)} = \hat{g}$, $g^{(2)} = \bar{g}$.
- All coefficients below ρ^n determined by $g^{(0)}$.
- $g^{(n)}$: connected to stress-energy tensor.

For full nonlinear problem (5):

- **Goal**: Prove $g^{(0)}$ and $g^{(n)}$ determine g (near J).
- (On a **large enough time interval**.)
- (Work in progress) Previous linear results are a key step.
Symmetry extension (4): more immediately tractable problem

- **Assume:** aAdS, symmetry at conformal boundary.
 - Killing vector field Z with $\mathcal{L}_Z g^{(0)} = 0$ and $\mathcal{L}_Z g^{(n)} = 0$.
 - Vanishes on large enough time interval.

- **Goal:** Symmetry extends to aAdS bulk (near I).
 - Extend Z to *spacetime* Killing field.

(Work in progress):

- $n = 3$: Pieces in place.
- $n > 3$: Some issues.
Key Steps

1. \textit{Guess} an extension of Z.

2. Derive \textit{closed} system of:
 - Wave equations (for \mathcal{L}_ZW).
 - Transport equations (for \mathcal{L}_Zg).
 - Adapt (Ionescu–Klainerman, Alexakis–Ionescu–Klainerman), (Alexakis–Schlue)

Apply UC results (from J) to this system.

3. \textit{Prove} $\mathcal{L}_Zg^{(0)} = 0$ and $\mathcal{L}_Zg^{(n)} = 0 \Rightarrow \ldots$
 - \ldots Solution of system vanishes at J ...
 - \ldots at sufficient rate for UC.
Thank you for your attention.