Correspondence Properties for Waves on Asymptotically Anti-de Sitter Spacetimes

Arick Shao
(joint work with Gustav Holzegel)

Imperial College London
Section 1

Introduction
Anti-de Sitter Spacetime

Anti-de Sitter (AdS) spacetime:

- Maximally symmetric solution of Einstein vacuum equations (EVE).
- With negative cosmological constant Λ.
 - For convenience, fix $\Lambda := -3$.

Globally represented as manifold (\mathbb{R}^4, g), with

$$g = (1 + r^2)^{-1} dr^2 - (1 + r^2) dt^2 + r^2 \hat{\gamma}.$$

- $\hat{\gamma}$: round metric on S^2.
- Generalises directly to higher dimensions.
Consider “inverted radius” $\rho := r^{-1} \Rightarrow$

$$g = \rho^{-2}[(1 + \rho^2)^{-1}d\rho^2 - (1 + \rho^2)dt^2 + \hat{\gamma}].$$

- ρ is a “boundary defining function” \Rightarrow can think of “$\mathcal{I} := \{\rho = 0\}$” as AdS infinity.
- $\mathcal{I} \cong \mathbb{R} \times S^2$ has Lorentzian structure:

$$\hat{g} := -dt^2 + \hat{\gamma}.$$

Spacetimes that “have same asymptotic infinity \mathcal{I}” called asymptotically AdS (aAdS).
Motivations

Question (∞)

Does “geometric boundary data” prescribed at AdS infinity determine interior dynamics of EVE?

- If two aAdS vacuum spacetimes have identical “Dirichlet and Neumann data” at infinity, then must they be isometric?
- (If not globally, then at least locally near infinity?)

In other words: Is there some correspondence between boundary data at infinity and interior gravitational dynamics?
Difficulties

Bad news: Initial value problems for hyperbolic equations generally ill-posed on timelike hypersurfaces (such as I).

- Thus, may not expect to solve EVE.
- However, can still ask whether existing solutions are unique.

Also, the EVE are highly nonlinear.

This is work in progress:

- Expect to prove various positive results.
A Linear Model Problem

EVE is hard \Rightarrow consider first a model problem.

“(Very) poor man’s linearisation” of EVE: scalar wave equation

$$\Box \phi + \sigma \phi = 0, \quad \sigma \in \mathbb{R}$$

on fixed AdS (or aAdS) spacetime.

- Consider analogous problem for scalar wave equation.
- Recently completed work.
The Main Problems

Question (1)

\(\phi_1, \phi_2: \text{solutions on AdS of} \)

\[(\Box_g + \sigma)\phi + a^\alpha \nabla_\alpha \phi + V\phi = 0, \quad \sigma \in \mathbb{R}, \quad a^\alpha, V \text{ decay}, \]

\text{with same Dirichlet and Neumann data on AdS infinity. Does} \ \phi_1 = \phi_2 \text{ near infinity?}

- \text{Equivalently: If } \phi \text{ solves the above, then does } \phi \text{ vanishing at } J \Rightarrow \phi \text{ vanishes near } J? \n
Question (2)

\text{Can we generalise solution to Question (1) so it can be applied to solve Question (\infty)?}
Section 2

Results for Scalar Waves
Results for Scalar Waves

Analytic Theory, Simplified

To get basic idea, assume:

- a^α and V vanish ($\Rightarrow (\Box_g + \sigma)\phi = 0$).
- ϕ depends only on ρ.

\Rightarrow 2nd-order ODE for ϕ:

$$\rho^2(1 + \rho^2)\partial^2_\rho \phi - 2\rho \partial_\rho \phi + \sigma \phi = 0.$$

Frobenius method \Rightarrow two branches of solutions:

$$\phi_{\pm} = \rho^{\beta_{\pm}} \sum_{k=0}^{\infty} a^\pm_k \rho^k, \quad \beta_{\pm} = \frac{3}{2} \pm \sqrt{\frac{9}{4} - \sigma}.$$

- Agrees with Breitenlohner-Freedman ($5/4 < \sigma < 9/4$).
Removal of Analyticity

Analytic theory \Rightarrow for ϕ to vanish, must eliminate both branches:

$$\rho^{-\beta} + \phi \to 0, \quad \rho \searrow 0.$$

Goal: Remove analyticity assumptions.

1. Consider non-analytic ϕ (depending on all variables).
2. Consider non-analytic a^{α}, V.
3. (Later) Consider other non-analytic metrics g.

Question: Similar results if ϕ, a^{α}, V are only C^∞?
Main Theorem, I

Theorem (Holzegel, S.; 2015)

Suppose \(\phi \) is a \(C^2 \)-solution of

\[
|(\Box_g + \sigma)\phi| \leq \rho^{2+p}(|\partial_t \phi| + |\partial_\rho \phi| + |\nabla_{S^2} \phi|) + \rho^p|\phi|,
\]

where \(\sigma \in \mathbb{R} \) and \(p > 0 \). Suppose that

\[
|\rho^{-\beta} \phi| + |\nabla_{t,\rho, S^2}(\rho^{-\beta} \phi)| \to 0, \quad \text{if } \sigma \leq 2 \ (\beta_+ \geq 2),
\]

\[
|\rho^{-2} \phi| + |\nabla_{t,\rho, S^2}(\rho^{-1} \phi)| \to 0, \quad \text{if } \sigma \geq 2 \ (\beta_+ \leq 2),
\]

as \(\rho \downarrow 0 \), on a sufficiently large time interval

\[
0 \leq t \leq t_0, \quad t_0 > \pi.
\]

Then, \(\phi \) vanishes in the interior of AdS, near \(I \cap \{0 < t < t_0\} \).

Furthermore, the results extend to \((n + 1) \)-dimensional AdS spacetime for any \(n \) (with natural modifications to \(\beta_\pm \), ranges of \(\sigma \), etc.).
Remarks: Comparisons

Comparisons with the analytic theory:

1. \(\sigma \leq 2 \): vanishing condition is optimal.
2. \(\sigma > 2 \): require more vanishing than expected.
 - **Question:** Can this be improved?
3. We also require vanishing conditions for \(\nabla \phi \).
 - Analytic case: redundant information, not needed.
4. **New:** “Sufficiently large time interval” assumption.
Remarks: Local and Global Uniqueness

Result is “local”: only show ϕ vanishes near $\mathcal{I} \cap \{0 < t < t_0\}$.

- AdS: can use global geometric properties to show “global” uniqueness (i.e., ϕ vanishes on $\{0 < t < t_0\}$).
- Does not extend to general aAdS spacetimes.

Remark

Global uniqueness: $t_0 \geq \pi$ necessary by finite speed of propagation.

- More surprisingly, this also seems necessary for local uniqueness.
Remarks: Bounded Potentials

Question

What if lower-order terms a^α and V decay less?

- In particular, V only bounded?

Proposition (Holzegel, S.; 2015)

Suppose ϕ is a C^2-solution of

$$|\Box_g \phi| \leq \rho^2 (|\partial_t \phi| + |\partial_\rho \phi| + |\nabla_{S^2} \phi|) + |\phi|. \quad (\rho = 0)$$

Suppose ϕ and $\nabla \phi$ vanish to infinite order as $\rho \downarrow 0$, on a sufficiently large time interval $0 \leq t \leq t_0$, $t_0 > \pi$.

Then, ϕ vanishes in the interior of AdS, near $I \cap \{0 < t < t_0\}$.

Again, the results extend to $(n + 1)$-dimensional AdS spacetime for any n.
Well-Posedness

Goal: Connect results to (non-analytic) local well-posedness theory.
- Connect vanishing conditions to zero Dirichlet and Neumann data.

Theorem (Warnick)

Let $5/4 < \sigma < 9/4$. Then:
- $\Box_g + \sigma$ propagates a “twisted H^1-energy” $E^1(t)$.
 - Roughly, like the H^1-norm, but ∇ replaced by $\rho^\beta - \nabla \rho^{-\beta -}$.
- Similarly defined “twisted H^2-energy”, $E^2(t)$, is also propagated.

Assuming one of the following boundary conditions,

$$
\rho^{-\beta -} \phi \to 0 \ (\text{Dirichlet}), \quad \rho^{-2+2\beta -} \partial_\rho (\phi \rho^{-\beta -}) \to 0 \ (\text{Neumann}),
$$

then $(\Box_g + \sigma)\phi = 0$ is well-posed in the twisted H^1-norm.
Main Theorem, II

Main idea: Given extra regularity, Dirichlet and Neumann conditions ⇒ vanishing assumptions in first theorem.

Theorem (Holzegel, S.; 2015)

Suppose ϕ is a C^2-solution of

$$|(|\Box_g + \sigma|\phi| \leq \rho^{2+p} (|\partial_t \phi| + |\partial_\rho \phi| + |\nabla_{S^2} \phi|) + \rho^p |\phi|,$$

where $5/4 < \sigma < 9/4$ and $p > 0$. Suppose

- ϕ satisfies both vanishing Dirichlet and Neumann conditions.
- ϕ has finite twisted energy $E^2(t)$.

on a time interval $0 \leq t \leq t_0$ ($t_0 > \pi$). Then, $\phi = 0$ near $I \cap \{0 < t < t_0\}$.

Again, analogous results hold in other dimensions.
Section 3

Ideas Behind the Proof
Unique Continuation

View question as **unique continuation (UC)** problem—a classical problem in PDEs:

- Suppose \((\Box g + a^\alpha \nabla_\alpha + V)\phi = 0\) on a domain.
- Suppose \(\phi, d\phi = 0\) on hypersurface \(\Sigma\).

Must \(\phi\) vanish (locally) on one side of \(\Sigma\)?

Cauchy-Kovalevskaya: \(g, a^\alpha, V\) analytic \(\Rightarrow\) can solve for unique power series solutions (if \(\Sigma\) noncharacteristic).

Holmgren’s theorem: Solution unique in class of distributions.
Non-Analytic Theory

However, this is not a satisfactory answer:

- Cannot deal with non-analytic g, a^α, V.
- Cannot deal with \textit{nonlinear} wave equations.

In the non-analytic setting, UC depends on geometry near Σ.

- (Hörmander, Lerner-Robbiano) Main criterion is \textit{pseudoconvexity}:
 - $\Sigma := \{ f = 0 \}$ pseudoconvex \Rightarrow UC from Σ to $\{ f > 0 \}$.

- (Alinhac) Σ not pseudoconvex $\Rightarrow \exists \ a^\alpha, V$ for which UC from Σ to $\{ f > 0 \}$ does not hold.
Pseudoconvexity

Definition (Lerner-Robbiano)

$\Sigma := \{ f = 0 \}$ is pseudoconvex (w.r.t. \Box_g and $\text{sgn} \, f$) iff

$$\nabla^2 f(X, X) < 0 \text{ on } \Sigma, \text{ if } g(X, X) = Xf = 0.$$

($-f$ convex on Σ in tangent null directions.)

Visually: any null geodesic hitting Σ tangentially will lie in $\{ f < 0 \}$ nearby.

Definition

If Σ ruled by null geodesics, it is called zero pseudoconvex.
Applications in Relativity

UC results have been applied in general relativity:

1. Rigidity of Kerr black holes: (Alexakis-Ionescu-Klainerman; Carter-Robinson, Hawking)
2. UC for waves from infinity in asymptotically flat spacetimes: (Alexakis-Schlue-S.)
3. Non-existence of time-periodic spacetimes: (Alexakis-Schlue; Papapetrou, Bičák-Scholtz-Tod)
Example: Pseudoconvexity

Consider the finite timelike cylinder

$$\Sigma := \{ t_0 < t < t_1, |r| = r_0 \} \subseteq \mathbb{R}^{n+1}.$$

- Σ is pseudoconvex (w.r.t. \Box, inward).
- \Rightarrow (local) UC from Σ into the interior.
Examples: Zero Pseudoconvexity

Example

Zero pseudoconvex—depends on geometry near Σ:

1. **Timelike hyperplane in \mathbb{R}^{n+1}: no local UC** (Alinhac-Baouendi).

2. **Null infinity of \mathbb{R}^{n+1}: UC from “at least half of \mathcal{J}^\pm”** (Alexakis-Schlue-S.).

3. **Null infinity of Schwarzschild: UC from \mathcal{J}^\pm near ι^0** (Alexakis-Schlue-S.).

(2) demonstrates non-locality in Σ.

Arick Shao (Imperial College London)
AdS Infinity

AdS infinity, \mathcal{I}, is zero pseudoconvex.

- Must examine geometry near \mathcal{I} more carefully.

However, cylinders \{\(\rho = \rho_0\)\} are pseudoconvex.

- \(\Rightarrow\) UC from \mathcal{I} to the interior, provided \(\phi\) decays as $t \to \pm \infty$.
- Extra decay needed, since region $\{0 < \rho < \rho_0\}$ has boundary $t = \pm \infty$.

Of course, extra decay condition is undesirable.
Improving Pseudoconvexity

Question

*Can we “bend” the hypersurfaces \(\{ \rho = \rho_0 \} \) back toward \(\mathcal{I} \), so that:

1. They remain pseudoconvex (inward).
2. They intersect \(\mathcal{I} \) after a finite time interval.*

More precisely, fix \(y > 0 \), and consider level sets of

\[
 f := \frac{\rho}{\sin(yt)}, \quad 0 < t < y^{-1}\pi.
\]
Improved Pseudoconvexity

Lemma

If \(y < 1 \), then \(\{ f = f_0 \} \) is pseudoconvex (inward) for \(f_0 \ll 1 \).

- i.e., *time interval* \([0, t_0 := y^{-1}\pi]\) *must have length* \(> \pi \).

Remark

Lemma \(\Rightarrow \) “sufficiently long time interval” assumption in main theorems.

- \(\Rightarrow \) Optimism that some UC from \(J \cap \{0 < t < y^{-1}\pi\} \) holds.
Carleman Estimates

As usual, prove UC via a **Carleman estimate**.

- Carleman estimate + standard argument \Rightarrow UC.

Carleman estimate is roughly of the form

$$\|e^{-F_\lambda(f)(\Box_g + \sigma)}\phi\|_{L^2(f<f_0)}^2 \gtrsim \lambda \|e^{-F_\lambda(f)}D\phi\|_{L^2(f<f_0)}^2 + \lambda^3 \|e^{-F_\lambda(f)}\phi\|_{L^2(f<f_0)}^2.$$

- $\lambda \gg 1$: constant.
- $F_\lambda(f)$: reparametrisation of f.

Some technical difficulties:

1. Infinite domains \Rightarrow infinite volume \Rightarrow integrability issues.
2. Zero pseudoconvexity \Rightarrow have to balance decaying weights.
Proof of Carleman Estimate

Carleman estimate can be thought of as an energy estimate for \Box_g, but:

1. We want boundary terms to vanish.
2. We want bulk terms to be positive.

Objective (1) from vanishing assumptions for ϕ as $\rho \searrow 0$.

Objective (2) achieved using a positive commutator:

- Consider wave equation not for ϕ, but for $\psi = e^{-F_\lambda(f)} \phi$.
- Multiplier method: integrate by parts

\[
\int_{f < f_0} \Box_g \psi (S \psi + h \psi), \quad S^\alpha := \nabla^\alpha f.
\]
Carleman Estimates, Continued

To ensure bulk terms are positive:

1. Bulk terms containing derivative of ϕ tangent to level sets of f:
 - Positive only when level sets of f are pseudoconvex.

2. Bulk terms containing ϕ and normal derivatives:
 - Use freedom to choose reparametrization $F_\lambda(f)$:
 \[F_\lambda(f) = \kappa \log f + \lambda p^{-1} f^p, \quad \kappa \in \mathbb{R}, \quad p > 0. \]

Precise vanishing assumption needed for ϕ depends on κ:
- \Rightarrow Must carefully optimise κ in Carleman estimate.
Conjecture

UC (or at least the Carleman estimate) does not generally hold if \(t_0 < \pi \).

Observation: Family of future null geodesics from \(J \cap \{ t = 0 \} \) which bend back to \(J \).

- Any such geodesic hits \(J \) at time \(\pi \).

Geometric optics solutions near these geodesics:

- Support of \(\phi \) arbitrarily close to \(J \).
- But, \(\phi \) vanishes on \(J \cap \{ \varepsilon < t < \pi - \varepsilon \} \).
Comparison with Timelike Cylinders

Can contrast with cylinder $C = \{ r = r_0 \}$ in \mathbb{R}^{n+1} (inwardly pseudoconvex).

- Timespan of analogous null geodesics depends on angle made with C.

Observation also important for studying linear waves in AdS (Holzegel-Luk-Smulevici-Warnick).

- Explains loss of derivatives in energy decay.
Section 4

Toward the Einstein Equations
Tensor Waves

Problem: EVE is tensorial, not scalar.
- Scalarising tensorial quantities \Rightarrow angular frames degenerate.

Solution: Generalise results to spherical tensorial waves.
- Application: treat linearised EVE about AdS (L-EVE).

Corollary (Holzegel, S.; 2015)

Suppose a Weyl field $W = W_{\alpha\beta\gamma\delta}$ on AdS spacetime satisfies L-EVE. If W vanishes to sufficient order at \mathcal{J}, then W vanishes in the interior.
Asymptotically AdS Spacetimes

To deal with EVE, we must handle other aAdS spacetimes.

Theorem (Holzegel, S.; 2015)

Results extend to large subclass of aAdS spacetimes:

- General boundary topology allowed (replace S^2 by another surface).
- Metrics (in Fefferman-Graham gauge) of form
 \[g = \rho^{-2} \left\{ d\rho^2 + \left[\mathring{g}_{ab} + \tilde{g}_{ab}\rho^2 + O(\rho^3) \right] dx^a dx^b \right\}. \]

 - \(\mathring{g} \) is static, and \(\tilde{g} \) satisfies a positivity condition.

Moreover, for vacuum spacetimes:

- Condition for \(\tilde{g} \Leftrightarrow \) positive curvature on sections of \(J \).
Nonstatic Spacetimes

Static assumption on boundary metric \(\hat{g} \) too restrictive.

Q: Can we remove this assumption?

A: Yes (work in preparation with G. Holzegel).

- Main idea: alter level sets of \(f = \rho / \sin(yt) \).
- \(\sin(yt) \) arises in computations as harmonic oscillator \((\psi'' + y^2\psi = 0)\).
- Roughly: replace \(\sin(yt) \) by function resembling damped oscillator.
Rigidity of AdS

Question

Can we apply previous results to treat EVE itself?

- Wave nature of EVE: curvature satisfies nonlinear wave equation.
- Caveat: background spacetime depends on wave.

Simplest case: rigidity result for AdS.

(Work in preparation with G. Holzegel).

- Assume aAdS spacetime, with Weyl curvature W vanishing on \mathcal{J}.
- Then, spacetime must be AdS (at least near \mathcal{J}).
Extension of Symmetries

Question

For vacuum aAdS spacetimes, are symmetries on \(\mathcal{J} \) inherited inside?

- **Metric level:** no (e.g., Kerr-AdS).
- **What about at curvature level?**

Conjecture (Work in progress with G. Holzegel)

If \(\mathcal{L}_{\partial_t} W \) vanishes on \(\mathcal{J} \), then spacetime is stationary near \(\mathcal{J} \).

- **Similar results expected to hold for other symmetries (spherical, axial).**
Rigidity of Kerr-AdS

Extension of spherical symmetry \implies rigidity result for Schwarzschild-AdS.
- Can we push this further?

Question

Rigidity result for Kerr-AdS? (Work in progress with G. Holzegel)
- *Does not yet follow from extension of axial symmetry.*
Future Work

Conjecture (Question (∞))

If two aAdS vacuum spacetimes have same Dirichlet and Neumann data on I, then they must be isometric near \bar{I}.

- *In other words: there exists a correspondence between vacuum aAdS spacetimes and boundary data.*

Question

What about existence of solutions to EVE from boundary data?

- *For which Dirichlet + Neumann data on \bar{I} is there a solution to EVE?*

In other words: for what space of boundary data do we have the above correspondence?