Statistical Modelling and Estimation
Mock Exam Question

March 18, 2009

1. Consider the model

\[Y_{ij} = \mu + \tau_i + \epsilon_{ij}, \]

where \(i = 1, 2, j = 1, \ldots, n_i, \tau_1 + \tau_2 = 0, E(\epsilon_{ij}) = 0, V(\epsilon_{ij}) = \sigma^2, \]
\(V(\epsilon_{2j}) = 4\sigma^2 \) and all \(\epsilon_{ij} \) are independent.

(a) Show how this can be written in the form of the general linear model.

(b) If all \(n \) observations have \(i = 2 \), find a least squares estimator of \(\beta \).

(c) Show that \(\tau_2 \) is not estimable.

(d) Show that \(\mu + \tau_2 \) is estimable.

2. In an experiment, data \(y_1, \ldots, y_6 \) have been collected using two explanatory variables \(X_1 \) and \(X_2 \), from the following design.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The proposed model is

\[E(Y_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_{11}(3x_{1i}^2 - 2) + \beta_{22}(3x_{2i}^2 - 2), \]

with \(Y_i \)s uncorrelated and \(V(Y_i) = \sigma^2 \).
(a) Express the model in matrix form, i.e. write down the design matrix \mathbf{X} and the vector of parameters β.

(b) Find the rank of the matrix \mathbf{X}.

(c) Find a generalized inverse of $\mathbf{X}'\mathbf{X}$.

(d) Hence find a least squares estimator $\hat{\beta}$ of β.

(e) Show that β_{11} is not estimable.

(f) Show that $\theta = \beta_{11} + \beta_{22}$ is estimable and find its least squares estimator $\hat{\theta}$.

(g) Find the variance of $\hat{\theta}$.

(h) Write down the form of a $100(1 - \alpha)$% confidence interval for θ.