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4., Geometric Theories

4,1 Quillen's Approach to Cobordism Theorles

We shall be defining various bordism theorles hx(w)
and from time to time will need to examine the dual cobordilsm
n¥*(-). As we shall only need a picture of h*(X) when X is a
manifold (usually 3“7Z/p ), @ulllen's approach to cobordism (33),
which uses Poincaré duality, will glve an appropriate

geometric description of cobordism classes. As an example we
sketch his definition of U¥(X). For the definition it 1is
necessary to assume X 18 a manifold. (However there 1s no
great loss of generallty ss we gllow non-compact manifolds
and any finite CW complex X cen be embedded in some R" with

regular neighbourhood such & manifold.)}

Definition 4.1.1 (Quillen (33)) Let £:2" "~>X" be a map of

manifolds (without boundary). A U~orientation for f is an

equivalence class of factorisations of f:

z>£»E~£9X
where p:E—»X 1s a complex vector bundle over X {or, 1f g
is odd E is (complex vector bundle)xR) and 1 1s an
embedding wlth a complex structure on its normal bundle V.
Two such factorisations i,i’ through E,E/ are equivalent if
there is a bundle E” containing E and E’ as summands, such
that within E¥ 1 1s isotopic to i compatibly with the

normal structure. The dimension of this orilented map is q.

Definition 4.1.2 (Quillen (33)) Two proper U~oriented maps

fo:2,—7X, £, :2,—>X are said to be cobordant if there is a
proper U~oriented map F:W-—> XxR such that the maps £;:X-> XxR
(¢i{x)=(x,1) 1=0,1) are transverse to F and the pull-back
of F by &, gives f;. (1= 0,1)
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Picture of a cobordism between U-oriented maps q::q;~>x,

f, 2 —>X i~

I~
)

o' s Zl
1

Cobordlsm:

Ve
Let U¥(~) be the cohomology theory defined by the spectrum MU,

Proposition 4.1.3 (Quillen (33)) UY(X) 1s naturally

isomorphic to the set of cobordism classes of proper
U-orlented maps of dimension g. Also, if YerX is a
deformation retract of a regular nelghbourhood, UY(X,X~Y)
is canonically lisomorphic to the set of cobordism classes

of proper Uw~orlented maps with lmage contalned in Y.

Proof: Quillen (32). It 1s just the "Thom construction®.
(Note that we need proper maps (l.e. lnverse Iimage of any
compact set compact) in ordertouse the Thom transversality

technique.) |

Proposition 4.1.4 U™(~) is the dual cobordism theory to

Ux(=). (L.e. on finite complexes they may be defined by the
same spectrum) Recall U,(~) 1s the bordism group of compact

manifolds with complex structure on thelr stable normal bundle.
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Proof This is trivial if we define Uy(-) end UT(-) as the
homology and cohomology theories corresponding to the spectrum
MU. However we shall be dealing with geometrlcally defined
bordism and cobordism theories without iInvestligating thelr
spectra, so we outline a proof regardlng U*(-) as cobordlsm
of proper U-oriented maps:i=~

We have to prove U'(-) and Us(~) are Spanier-Whitehead
dual (see Whitehead (42)) l.e. for X embedded in 8" as the
deformation retract of a regular neighbourhood we have to

show there 18 a natural isomorphism ¢:UQKS“,SK~X)g Unﬂﬂx).

Definition of ¢

Let xeUY(s™,s"\X)

Represent x by the U-oriented map: M<>E

I

s"  (with image

C;_X)
E is always a summand of a trlivial complex vector bundle so

without loss of genersllity we may take E trivial.

y; now gives a U~structure to M, (i.e. & complex structure
on the stable normal bundle of M}, and pi proper =M compact.
Thus M7;>X 1s an element of U, _ (X).It is straightforward to

check ¢ 1s well-defined.

-1
Definition of ¢

Let ye¢ Un_,y(x)

Represent y by M~i>x

« (Now note that since every compact

subset of 8 is closed, M compact =>f proper.)
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<
Now take any embedding Mes GV for some large N and consider

the factorisstion of f:-

Me—> 5™ C"
fxe
"
S'ﬂ-

Since M is & U-manifold we have a complex structure on %,‘L'
Standard theorems about embeddings of M in o being isotopic

- -1
for large N then show that c?%‘ is well-defined and that ¢

is inverse to ¢. l
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4,2 "Ruler Classes" for Z/p-bundles

This section is intended mainly to give some motivation
for the construction of certain bordism and cobordism theories

in the following sections.

Recall definition 3.3.1: a representative Z/p-theory
R(-) 1s a connective commutative ring theory with h®(pt.)s%/p,
together with classes (otk)é (h' (Bz/p)) which mep to

' Ah h* (BZ/p) v a1 N
3 H'(BZ/p;2/p) and which has 4 ¢ image 1" :h (BS )»»h™(BZ/r
(p)é H ? >

*(BZ/p;Z/p)
For such a theory h*(X)AH*(X;Z/p) ls epimorphic for

all X (Corollary 3.1l.3 (Rourke)) and slso m:Z/px Z/p-—>2/p

gives & Z/p-formal group structure to h™(Bz/p) (Definition 3.4.]

We may therefore expect the universal Z/p-formal group
to have a geometric reallsatlon as "the unlversal represent-

-ative Z/p-theory". So we start by examining the geometry of

BZ/p:~

BZ/p may be regarded as the limit:

FE.CY) antl 2n+d
S/ =5/ —» 8/ —>
Z/p Z/p Z/p

(where the action of Z/p on 577 s given by taking the complex

LR AN J

s'—actlon on $"'<s ¢ and using our standard Z/p<sS’)

ntl

Consider the embedded U-submanifold: S/ < S/
L
Z2/p " 2/p

;2/p) and thus,

A
/
’ o) ES :.M-IZ/p
by Poincare duality, a class A7 eH " (8 / y 32/p).
2/p

This represents a class B, HM_,(S1

i 1) G} A
1¥4%=A"" ana Jﬁyﬁ =3¢ H (BZ/p;2/p) (see e.g. Rourke (34))
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Similariy consider the embedded "U-submanifold with
an-! 2t
- "y : . : the joi
Z/p-singularity"s S *2/p_ o caS /z]/p (Z/p has the ,]lon.n
An-
action on S *%/p)
el

This represents a class o ¢ H (S /Z/p;Z/p) and thus, by

Poincare duality, & class LeH' (Suyz/P;Z/P)’

" LS (‘\‘
1:o:f‘=n¢“) and léglot o eH '(BZ/p;Z/p) (see e.g. Rourke (34); note
- ",
that S * z/ Z./pgDz/ﬂ.- where ~ represents the identification

Slu—l_» grwf/z/p . )

We shall conslder the bordlsm theory “)V*(—) of

"J-manifolds with 2Z/p-singularity". The above definitions
I antl n et /
then give f3,¢ lVh_i(S /Z./p) and o, ¢ V, {8 /Z/p)° Poincere duallty
+ {r 1 +
glves elements /5{’"6“1\11(81'\/'2/1}) and o &V '(SM/Z/p) and using
the Quillen pilcture for “@y¥(~) it will be clear that 0{(.\}’ /JM

. (D yy ! Lt (.1, 2t
glve well-defined “vé%? Vv (S /Z/p) and f3,¢ 12.;\1'31 V(s /Z/p)°

Thus in the cobordism theory ‘"V*(-) (formal definition
later, in 4.3) each Z/p-bundle has natural characteristic
classes o(\,,/?‘r, which we now show are closely analogous to the

Euler class e, of a Z/2-bundle.

+ 1
In the Z/2-case RP = Thom space of the line bundle over

{nl
N

represented by the embedded submanifold RPnc__a, RPM' and this

RP™ ( = mapping cone of Z/2-bundle over RPn). e 1s

i
cholce gives a well-defined element e  of 1im N (RP ) as
é.-—l'

* fn)_ (x-1)
ieN ech

In the Z/p case we have g more complicated construction

b ER |

,g Tt PR |
on the Z/p-bundle % over § /Z/p to get S /Z/p (x (5 *5 )/Z/p)‘
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D(I)= D -bundle associated to 3

Each fibre of D(J) has boundary s' with a Z/p-sction on it:

i
we glue all these S 's together to a single S /Z/p .

Definition 4.2.1 We may apply thils construction to any

7/p-bundle "1, We call the resulting space the guasl-Thom

space q(")) of M. Thus q(3)=S7,, .

Definition 4.2.2 The mapping cone of a Z/p-bundle " is called

the Thom space t(M) of M,

(") sq{M) G (with identificetions

on boundsaries)
Let b(”) denote the zero sectlion of g(m).

A=l
Then for the Z/p-bundle % over S /Z/p we may represent:

dv'émvi(émvé/p) as the class Polncaré dual to the embedded

"Jomgnifold with Z/p-singularity" ()< q(¥)

pve™* (8", ) es the class Poincaré dual to the embedded
U-manifold b{3¥) <> q(¥)

(Once again, formal explanations later)

This choice ofy,Av will give well-defined elements

e 1im "V(S™/ ) since they pull back correctly under
= 2/p

“,/Z/pc" g-M/lz/p ’

Remsrk 4.2.5 By 1ts definition thisf%.represents the U¥-

-Euler class of the complex lime bundle associated to3, so
Ay € image 1%: Ov¥(Bs') —"v¥(Bz/p) (since 1t is in the

image: U¥(Bs')-> “v¥(ms')—"v¥Bz/p). )
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4.5 U-manifolds with Z/p-singulerities: (Vs(=)

The object of thls section 1s to give a formal definition
of "U-manifolds with Z/p-singularities"; the easiest approach
is to cut along the Z/p-singularity set, leaving a boundary

with free Z/p-action on it.

N /
S : ~ [/
| AN
- - ————

o -
-7 / \
”
\

\

singularity set boundary with free
Z/p-action on it

Definition 4.3.1 (M,M;,t) 1s a U-manifold with Z/p-singular-

~ity (= a®Vemanifold) if M is a U-manifold with boundary
M, and a free sction tiof Z/p on M,, preserving the

U=-gstructure on M‘.

(A U-manifold M is a manifold with a gilven complex structure

stable
on its,tangent bundle TM; as M, 1s the boundary of M, it has

a collar in M and so *M| =M &{trivial real line bundle corres-
l ~-ponding to inward normal)

and this induces a U-structure on M, )

(M, aM,M,,t) 1s a U-man.+ Z/p-sing. with boundary (= a ®V-man,

with boundary) if M is a U-man. with boundary M,vdM, such
that dM is a U-man. with boundary MandM, and t is a free
action of Z/p on M, preserving the U-structures on M, and M nGM,

(so that aM 1s a “V-man.)

aM
(with free Z/p-action)
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Remark 4.5.2 Given a W-man. (M,M,,t), if we quotient by

the %/p-action t we get a !'pseudo-manifold' where each point
has link s* ! or s % 2/p; the singularity stratum (set of
points with link s“*% 2/p) is a codimension one submenifold
heving normal bundle with 'fibre! Z/p=x pt. and structure
group Z/p. Thus 4.3.1 does indeed capture the notion of

'U-man. + Z/p-sing.’ ‘

\\\\ //
7N

The two pictufes are equivalent and we shall use whichever is

—— s S f———e - =

L

most convenient for each sltuation.

Remark 4.3.3 Qur definition is just that of Sullivan (40,

Baas (3), Stone (38) etc. for manifolds with singularitiles,
except that Sullivan and Baas desl only with the case where

M, is a triviel Z/p-bundle l.e. when the normsl bundle to

the singulerity stratum is trivial.

Remark 4.3.4 It 1s important for transversality arguments

later to observe that being the boundary of M, M, has a
collar in M, l.e. a regular neigbourhood# M;xl. After quot-
-ienting by the Z/p-action this collar becomes a regular

neighbourhood of the singularity set M‘/Z/p’ indexed by I.

Definition 4,3.5 V-manifolds M”,M” are saild to be bordant

if there is a MVemanifold with boundary (M,dM) such that

~ /4
dM= M'LL(—M’) ("=" denotes reverse U~-structure). Under

disjoint union as sum the bordism classes form a group V.
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Given any space X the bordism group PV, (X) is defined

to be the group of equivalence classes of maps f:M-—X
(where M 1s a compact “V-manifold end fl, is equivariant with
respect to the given Z/p-action on M, and the trivial Z/p-

-action on X). The equivalence relation is that:

(£ M—>=X)~ (£”:M—X)<=>3M such that dM= M’ (-M")
& F:M—>X such that F|, = £

& Ffwﬁz 7 (F equilvariant on M,

—_ __ *t
R
B S X
"

{(with free
z/p-action)

Once agalin we have two equivalent 'pictures! of the
bordism group:-
(1) Manifolds with boundary and free Z/p-action on that
boundary (and equivariant maps f).

(2) Manifolds with Z/p-singularities (and maps f).

Theorem 4.3,6 (”V*(u) ls a generallised homology theory.

Proof The proof that ®Vi(-) satisfies the Eilenberg-Steenrod

axloms follows the'lines of the standard geometric proofs

that N.(-) is a homology theory. (see e.g. Br8cker and tom

Dieck (6)}); rather than present a full proof we indicate the
{Chapt .I1)

changes necessary to Br8cker & tom Lieck's proof for the

most difficult axiom, Mayer~Vietorls:-
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Let X= X,vX, be & normal space with X,,X, open subspaces.

We have to construct a natural exact sequence:=-

, S
e ooV (K, A X, )Y (X, 18V, (X )V (K) 25V, (Xon X, ) > e

Each map here has an obvious geometric definition, except for 5.

Definitlion of 5

Let xe ®V,.(X) be represented by the pair (M,f), where M

is a YV-manifold and f:M—> X,

By Urysohn's lemma there 1s a continuous maep giX-—1

such that g (0)2 (X~X,) and g (1)>(X~X, ). Let h=gf:M—>1

X~

XO
[
XX,

M XNX,

What is now needed 1s a transversality theorem to give
arbitrarily close to h an h’, such that h’is transverse to
the submanifold.i%}dyl. (Regard M in this instance as a
manifold with singularities: 'traensverse' for such a manifold
means 'simultaneously transverse on all stratat ,For detaills
see e.g. Stone (38))

The method of constructing such an n' is:

(1) On the singularity stratum M'/Z/p we homotop h to h,,

transverse to:{%} o (using Sard's theorem)

(2) Using the regular neighbourhood of the singularity stratum

given in 4,3.4 we extend h, to a map h, deflned on the

whole of M and homotopic to h. {using the homotopy of (1)
to maeke this extension,)

(3) Keeping h, fixed on the singularity stratum we homotop

f
h, to h' transverse to {%} away from that stratum. (using

Sard's theorem)
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-1
M is now defined to be N {( 3 ) end the trensversality of

h' ensures that OMe mV“q(XonX,). It is well-defined as =a

bordism class by the standard arguments of Brécker and tom

Dieck (é), with 'menifold' replaced by ' ®Vemanifold', and
?Chapg.’ll% ’

the Mayer-Vietoris seguence may be proved exact for(“E*(-)

by their (geometric) method.

By its definition & is natural, and (PVi(-) clearly satisfies
the homotopy axiom (by regarding a homotopy as a bordism),

so all the Eilenberg~Steenrod axioms are satisfied, |

We now proceed to define the dual cobordism theory v¥(-)
in an snalogous way to Quillen's definition of U¥(-) (4.1).
Wy™(X) will be defined only for X a manifold, but as
explelined in 4.1 this is sufficlent to deflne it for X =
finite CW complex X. We may use either 'picture? of(”v-manifold,
but choose that of 'U-manifold with Z/p-singularity' rather
than the 'cut-open' picture, as it seems the most appropriate

form for the class dVJWJ(BZ/p) i-

Definition 4.3.7 Let 2" ¥be & manifold with Z/p-singulerity

n n—t}r "
Z,/Z/p s let X be a manifold, and let f:Z2 I—=X ,

(Note that z™% is not required to have a U-structureje.g. 1t

G

need not be a YVemanifold 1f X™ 1s not a U-manifold.)

A Wyoorientation for f is an equivalence class of factorisations

of f;

7>t > E —ux

where p:E—>X 1s a (stable) complex vector bundle over X and
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and 1 1s an embedding carrying a complex structure on its
normal bundle Y:{away from the singularity set Z,/Z/p); 1
glso cgrries a complex structure on the normal bundle‘fbito
the singularity stratum Z,/Z/pcépE. We require the complex
structures on y; and M, to be compatible in the following
sense: regard Z, as the boundary of 4, so that )Y; induces
a complex structure on the normal bundle to Z; , requlre this
structure to be preserved by the Z/p-action, and require the
induced complexstructure on the normal bundle pm,; to Z‘/Z/p

to be the same as the given one.

~ { ! E
h n
\\
- 4/ .

- C“"—_}" - o @

\ Z i L o - »

\ Z

\ \ ,L 2, I/Z./p
singularlty [

stratum ZI/Z/p

- - 7
L
Two factorisations of £, Z —~>E L5 X, and 2—> E'—>X, are

equivalent 1f there 1s a bundle E” containing E and E' as

summands, such that within E“ 1 1s isotoplc to 1’ compatibly

with 8ll the normal strmcture.

Definition 4.3.8 Two proper’“V—oriented maps £, :12,—>X,

£, :2,—>X are sald to be cobordant 1f there is a proper
y.oriented map F:Wr>Xx R such that £;:X<>XxR (£:(x)= (x,1)
i= 0,1) are transverse to F and the pull-back of F by ¢;

gives fy. (1=0,1)

Disjoint union as sum makes the set of cobordism classes

into a group, which we denote WV¥(X),
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For Y¢ X a deformation retract of a regular nelghbourhood
we define the relative group‘ov*(X,X\Y) to be the group
obtained by using ""V-oriented maps with image &Y and cobordisms

with image & Y.

ty¥(.) is a contravariant functor on the category of
manifolds: let x «" V' (X) be represented by £:Z2—>X gnd let

g:¥Y~—> X be a mgp of manifolds.
Z

1f MY-oriented

g
Y = w X
manifold manifold

Vie approximate g by a map transverse to f Dby regarding Z
as a manifold wlth boundary Z, and using the standard
transversality technique of Thom. The pull~back of Z over
Y then gives an element of m'\Ifik(?f), as required, and the

construction is clearly natural.

Theorem 4.3.9 ("v*(-) 1s a cohomology theory and is dual

to MVe(-).
Proof It is sufficlent to prove the theories are Spanier-
-Whitehead dual as this implies "v¥(-) 1s a cohomology
theory on flinlite complexes. Thus we must show that for X
embedded in S"as the deformation retract of & regular
nelghbourhood there 1s a natursl lsomorphism:-
¢ :
The definition of ¢ and 4;4proceed exactly as in 4.1.4

)
V(ST ENX) B (X)

o
except that at each stage we have to deal first with the
singularity set M'/Z/p and then use a regular neighbourhood
indexed by I to extend to the rest of M (as in 4.3.6). We

omit the detsils. '
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é“f‘z/ §f7 1s a “V-oriented map,for:
> Z/p‘f? 2/p ’

-1
(1} Excising the singularity set (§“/Z/p) leaves an open
2T 2+
disc D'c» S /g/p which has trivial normal bundle Y.
v
(11)The singularity set S 7y /p has a normal bundle Miin
§f72/p wlth a natural complex structure and when thils

bundle 1s pulled back to s 1t 1s trivial, (since M1
and Lt

1s induced by S /gz/, =28 /g <»CF" ), so that s 1s

compatible with Y.

Thus, as antlclipated in 4.2, the map 1 represents an

at! n~t)
element ékkbbl(élyz/p). Further, 1¥a™ = o

s0 we obtaln an
lement oy €1im V' (55 /). Similarly £, , cu 8V
element o €1 2/p)- v ST appen Sy

(which has no singulerities) defines an elementfevé%iyavl(§ﬁ7z/

n P

However, V¥(-) 1s not a Z/p-theory (3.1.1) as it has no
miltiplicative structure. (We shall see in Chapter 5, when we
calculate V¥ | that 1t contalns elements of order p* and
yet 14 "V® has order p). Also, though we shall not prove it
here, "V (X) does not map onto H¥(X;Z/p) for sll X; to
adjust v*(~) to be a multiplicative theory, and thus to
have all the machinery of a representative Z/p~theory (3.3.1)

we need to introduce 'product elements' with !join-singularities!



4,4 Products of elements of (VY™

Step by step, we now construct(dnv*x—), the universal
(commutative) multiplicative theory generated by the
elements of (WV*(-), It will be & representative Z/p-theory
and in due course we shall show that a sub-theory VF (- )™ v
glves & natural geometric realilsation of the universal 2Z/p-

-formal group as v¥B Z/p)e

Suppose A, A, eee, b eV

The Cartesian product A *A *eee*An 1s a pseudo-manifold
with link classes Z/p¥%, . 4%/p% " (r<n). A nelghbourhood
of each singuiarity é;;jiﬂ;“has fibre Z/Efliiig/p'*pt‘ and
structure group (%/p)’ s(when all the deeper*;trata have been
exclsed, 1n order to make the neighbourhood a fibre bundle,)

In the picture obtained by 'cutting along the singularities!
this is seen more clearly: consider Ayas a U-manifold with
boundary P4; end & free Z/p-action t; ondi,, and then
consider the Carteslan product A= A x ...*4,. The boundary of
A, @A, has faces and corners (in the sense of Baas (3))
viz:

PA=B VB v...wB,  (where BF=PA XA X.. 04w

Bi= A XA %44 rh, ebec.)
and the By are manifolds with corners:

PB=By  VeeovBs o (where By SOAsO4 A £.. k4 etC,)
etc, in fact giving manifolds with corners 35 indexed by all
subsets S of $1,...,n} .

Further, we have a free action of Z/p on each B, (from

that onﬁbAb) and a free actlon of (2/p)" on each Qﬂ‘}( from
L’Jo

that on 24 L@A})etc.
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1
%} 75((Z/p) -~actlon from
2
B / j |
i Z/p-actions on B, & B,)
(z/p- B,
action)

(Z/p-action)

< B{!,&,‘B‘ﬁ

Quotienting thils picture by all the group actions tekes us
back to the picture of a pseudo~manifold with links of points

T/D ¥ 0K T pAh S
W
-4"

We would like & bordlism relation on our products of
elements A; ¢V which will give A,x ...xA, bordant to
hoinX eeeX hony (8t least up to sign) for each permutation

o of {l,Q,...,n}.

A

3 R ——

Wﬁ—#—ﬁ-—} 3 e "

s . - i n
To obtain an isomorphism

bordism of A X.o.X 4, tOo A

ey X se X Agny &Ren we must !'forget!
the labelling data which orders the faces and corners of

A, X +eoX Ay (or, equivalently, forget the labels on the %/ p-
singularities and their intersections). The next section

sets up a framework for this:~ 'manifolds with unlebelled

cornera'.
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4.5 Douady's Manifolds with Corners

Definitlon 4.5.1 (Louady (16)) A “~manifold with corners is

defined just like a lemanifold except that as 'model spacse!

we gllow sectors of R" of the form:~

<

ATIX, 20, x,20,.0., x, 205 R (where x; are

orthogonal axes)

-

Definition 4.5.2 A j-face of the sector A (above) 1s &

subset of A with the further restrictions 2x;;=0,...,x2;=dk

(1,,..,1}5{1,2,...,k} } (so A has (%) j~faces)

1-faces of A 2-faces of A

Remark 4.5.3 If M is a G -manifold with corners then the

points corresponding to points in j-faces of the model sectors
glve rise to well-defined strata in M for each j; (just as

a manifold modelled on 'half-space'! has a well-defined boundary)
See Douedy (l6) for the technical details.

Definition 4.5.4 The index of x € sector A 1s defined to be

the greatest codimension of faces of A containing x. If M is

a ¢ -manifold with corners define Mk to be those points of

index k. (Well-defined by the above remark). M, is a manifold.
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Thus a C¥meanifold with corners M has boundary 2M stratified

by the manifolds M :-

1t

2l I v M v, M

t 2 3

Each point xeM has a neighbourhood diffeomorphic to a well~

defined sector A of Rﬂ; thus 1t has a well-defined 'tangent

sectoxr! Ax .

Definition 4.5.5 (Douady)

BkM':{(x,F); Xeé thMk“v eve & F a k-face of A, (tangent sector)}

Then 3% 1s a C¥-manifold with cormers. (For proof see Louady(ié))

o\

Remark 4.5.6 We observe that in general BMlM) is an
~

-'—
ri ~cover of BTM. {and that M4 is the interilor of 2 M. )
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Definition 4.5.7 A U-manifold with corners is sa CMLmanifold

with corners M together with a complex structure on the stable
tangent bundle to the 1lnterior of M.

Being the boundiary of M, 3M has a collar in M and so
the complex structure on TM induces one on M, (c.f. 4.3.1)
and thus ?;M is a U-manifold with corners in a natursl way

(and so 18 2 (2'M) etCe )

f
L i

- N ! A'//II- ----- J | » a M

PR NC

J : f}??i"‘ 'T
_ 1|§ 1;I\R\\ efuq

. ¥
| > & f, o~ ¢
DM t 2(2" 1)

{(the arrows represent the U-orlentations)

Note that 2 M has no naturally induced U-orientation as
the orientations induced by the two *sides! of 2 M <»MN are
opposite as the '"inward normals' are opposite, However

t !

DI(B .eeld M})always has a natural U-orientation and it is
\—--Vq:\—.._'-
clear that this U-~orientation is reversed by the odd
permutations in f;and preserved by the even permutations.
+
(Recall 2(2'...(2'M)) is the r! -cover of 2 M, and the action
\-——-—:PA-\_,/

of 2;corr33ponds to reordering the labels of the faces of M

meeting at AM)

'U-manifolds with corners' will give a suitable
generalisation of !products of elements of ®V¥! once we have
put appropriate actions of Z/p on M; etc. (In fact the Dousady
manifold with corners is a manifold with fe3, Je}xJel, ...
singularities (so having links 8™, S$"Wle} etc.) where e 1is

the identity group.)
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We now examlne,informally,the group actions necessary on the
faces and corners of a U-manifold with corners to define

: - wi,
a pseudo-manifold with links 8™, S"Z/p, SHL/D*Z/Pyeee e

M Py M M
First, we must have a free action of Z/p on M, (which
corresponds to the stratum of link type SWQ‘Z/p)

This action induces a Z/p~action on ?'M, and hence two
Z/p-actions on M, (one from each 'side').,In order to obtain
o stratum of link type S™ % Z/pxZ/p from M, we require

that these two Z/p-actlons be "orthogonal" 1l.e. that locally
they give a free(z/p)lmaction.

Similerly we get three induced %Z/p-actlons on M; and we

require that locally they give a free (Z/p)s-action, ete.

The reason we only have a local action of (Z/p)L on M, 1is
that the two "sides" of M, in M, may not be globally labelled,

i.e. they may interchange:-

Exemples

- - M TN M

(M8blus strip)

These correspond to the situation where a Z/p-singularity set
(corresponding to M, ), Intersects itself in a Z/p*Z/p-singularity

set {corresponding to M;).
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The effect of allowling such self-intersectlons of singularities
is to increase the structure group on the "depth n"
singularity normal bundle (fibre (Z{kaz/gf..akz_//p)* pt.) from
(z/p)" to Z/plﬁh. "

Remark 4.5.8 The wreath product Z/pl£,1is defined by the

split short exact sequence:-
4"
0 —>(Z/p)—> Z/P1E ;> Z,—>0
(where c¢f act as the permutations of the factors of (Z/p)1rL ) e

A good way to think of Z/plZ,_ 1s as the multipiicative

group of nxn permutatlon matrices (matrices with one entry in

27T h-'./f,

each row and one in each column) with entries e (k=1,..,p)

In fact our free actions of (Z/p)“ defined locally on
M, £fit together globally to glve a free action of Z/p?_ﬁn on

T
202 ... (2 M)), which is an n! -cover of M,. {The £, -bundle

.

>0 L M))—»M, carries the 'global' data about which

"
singularity intersects which.)

Example of a 2/2%Z/2-singularity with group %2/22%,

B*d. 1 Si l l e
self~intersection ﬂ imensionsl manifold M
4/

of singularity |

/

z/2-singularity

Cutting slong the singularitlies we get:

M, ‘ l Moy
‘ P 3 .
We have a free Z/2-action We have a free (2/2) ~action
on M i~ i on Mai=" (local
ﬂ: PSERN =global
_ e 3 in this
s = case)
;
( rd
And we have a free g/
L ’

— .y o= P

‘Z/?,'Li.,_—action on?'(E'M):- ——e . me

-y
-—-y
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4.6 The Bordism Theories ™Vi(-)

We use the 1deas of 4.5 to formally define a serles of

R (8

bordism theories, “Vy(-}% Uu(-)—> Q*(“)WHJ”V*(-)__v Viel=doeo

Vefinition 4.6.1 An ®V-manifold M is a U-manifold with corners,

all having index <n, together with a4 free Z/p~-action t on if,
+
(preserving the Uworientation) which induces free (Z/p) =-actions

locelly on the corners MT (and hence free Z/p]ﬁaractions on

2 (M), )
\._..»—-—«\:—-_/

Remark 4.6.2 Quotlenting by all the group actions glves an

equivalent picture of en™Myomanifold as a pseudo-manifold
~ -1 M3 -]
with points having links 8 ,8" % Z/p,S" *Z/p*Z/D,«cesS %%/ Pk 42/}

1 ™
where the stratum with 1link type SwﬂkZ{B*..JFZ{p has normal

-.‘—'
bundle with structure group 2/plZ; (acting on fibre Z/p*.*Z/pkpi
» v\?__zp
and where the stratum with links S has a complex strucure
on its stable tangent bundle preserved by the group actions

on its boundary ete., From this plcture we return to that of

4,6.1 by 'cutting along all the singularities,!

The relative version of g U-manifold with corners is a

U-manifold with corners and boundary (M,dM) which we define

to be & manifold M with corners, having boundary dMvd M, such
that dM is a manifold with corners {(its faces and corners

being 2MA dM).

DM

Thus anﬁdv—manifold with boundary 1e defined to be a

U-manifold with corners and boundary (M,dM) together with
approprlate group actions on the strate ofdM (and then dM

1s an ™Vemanifold).
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|,[ f . .[ ] J
(2) ?giew;i;£9~m)) has a collar in 9 (2 ,..(3" M)). We use

% vi~!

this to extend f; to a map f, defined on the two deepest

stram@w’ m%/p1ggu<bw' b %/pp;-) and

homotopic to f.

(3) Keeping f, fixed on the deepest stratum we homotop f, to

< f
f, transverse to-i%% on (2 ... (2 1) Z/pzf_‘(using Sard)

3

.»+s repeating process, at each stage using collar of

R el
T

£’ @efined on the whole of M and homotopic to f, with

QLLEL%LLEQ'M)) tn 2(2'...(2' 1)), until we arrive at an

£’/ transverse at {%}C>I.

As in 4,%.6 ,once we have this transversality theorem the
geometric methods of Brécker & tom Dieck (g) generalise
immediately to prove the Ellenberg-3teenrod sxioms forﬁgv*(-).

We omit the details. E

As in 4.3.7 we may use Quillen's duallty approach to define
MN-oriented maps and thus define a cobordism theoryéovk(m).
To prove that (Mv¥(~) is indeed the dual cohomology theory to
MYy (-) is just a matter of generallsing 4.5.9 (using induction

and the collars of 4.6.5)

Remark 4.6.6 Carteslan product of MVemanifolds induces a

series of multiplications@QV*(-)xhqv*(-)~$wmﬁ*(-). Since

the 'orientation! of an®V-manifold is induced by the
U~structure on its top dimensional stratum these multiplications
are commutative, (in the sense of Mllnor i.e. a.bs= (-1fuMLAMé;aJ

(See 4-4)
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Definition 4.6.5 Two™vVomanifolds N’,M” are said to be

bordent if there is an ™V-menifold with boundary (M,dM) such
that aM® M'u(-u"). Under disjoint union as sum bordism classes
of compactégv-manifolds form a group, denotedﬁqv$. The bordism

theorylﬂv*(w) 1s defined in the analagous way to 4.35.5.

Remark 4.6.4 N (-) is just Uy(-). Also the definition of

Ve (-) egrees with our earlier definitilon of "Ve(-) for n=1.

Theorem 4.6.5Idmk(~) is a generallised homology theory.
Proof The geometric proof of Brécker & tom Dieck that Ng(-)

1s a homology theory generalises toégv* {-) as 1t d4id for
mv*(-) in 4.3.6. Agalin the only difficulty 1s to prove a
transversallty theorem for maps f:M—>1 (M an V-manifold);

to show that such an f has an f’ transverse to %%zéﬂ:hOmOtOPic

to £ and close to f we proceed inductively on the strata of M:-

-
- s // './,/‘" ) .
o ol - L . »
//..- / /’/ s - - - bt
TN T | \ fow
M 2'u 2(2' 1) 23 (2'u))
free free free
Z/p-action Z/blﬁ%;action Z/pli%uaction

(Regard M as a manifold with singularitles and recall that

ftransverse' means 'simultanecusly transverse on all strata')

The method of constructing £/ 1s:
] 1ot !
(1) On the deepest singularity stratum BLL2~%;LL; M)}/%/plﬁhy

we homotop f to f', transverse to {%@ (using Sard's theorem)
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Definition 4.6.7 (¥V,(-) 1s the theory obtained from 4.6.1

by omitting the restriction r<n.

It 1s obvious geometrically that an element of @V _(X)
cannot have corners of index >m so it is immediate that
ﬁ”%’(x)"liméﬂvx(x) (and so, being a limit of homology

theoriles, @dv*( ) 1s also a homology theory).

(0K () 1s g multiplicative theory and the multiplication

is commutative {(from 4.6.6}. Also V°(pt.)=2/p , 80 @V¥( =)

is a Z/p-theory (3.1.1). In fact we have:-

Proposition 4.6.8 The classes ogv 1im‘“V (é“y’/p of 4.2
lim My s“"/Z /p)

map to classes [oty ( 1im “W' (8 /Z/p which make “V*(-) into
Bv liquh (s /Z/p

a representative Z/p-theory (3edo1)

Proof This follows at once from the geometric definition of

oLy 2 v in 4.2, There is just the small technical point that
3.5.1 asked for a,,fv “N*(BZ/p). The best way to deal with this

is to observe that Rourke's theorem and its corollary (3.l.2

and 3.1.3) only requlre & ,f ¢ %%%ﬁ¢v*(§“72/p) (as his proof

of 3.,1.2 only uses finite skeleta of :LBZ/p). As 3.1.2 1s

satisfied @ vV*(-) has a spectrum weakly equivalent to a

product of Ellenberg-Maclane spectra gigép) (Rourke (34)). Ve

may now use this product of Kigép)'s to define “Vv¥(-) on

infinite CW complexes, and we have@wV*(Bzfp)€¥%égéqv*(§k7z/p),

resolving the technicality. I

Remark 4.6,9 It would be interesting to determine the structure

of the bordism ring of U-manifolds with corners (i.e., &v*

with Z/p replaced by the trivial group fet o(Recall 4.5.7) )
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4,7 The Exact Triangle

Theorem 4.,7.1 For all n> 0 the following triengle of homology

theories is exact for all CW complexes X.

MDY () e, (X)
(i1,  degree O
::>\\ ﬁ///;; jo degree -n
W*(X+A(%JAZB(Z/P1£,L)+)) kv degree n-1)

('+' denotes 'with a disjoint base point!)

Proof First gn explanation of Mg§%?(2/plé;) -

This denotes the spectrum obtained from IVI,\III,\E(Z/plih)+ by
quotienting by the action of Z/plﬁn, where the action on MU
is glven by Z/pl% —> E;ﬁb =, and £, acting on MU by reversing
the U~orientation.

Thus TE#(X“VA(M\TIJAiLB(Z/pIEﬂ)*)) is the bordism theory of
U-manifolds which are the total space of principal Z/p?_éh—
-bundles with the further property that Z/p)=Z, acts on the
U~orientation via Z/plz —» 2 —> 2 , (0f course such bundles
are 1n one to one correspondance with assoclated bundles

having fibre Z/p¥...*Z/p.)
nofold join

The heart of the proof that the triasngle 1s exact is to
regard “V,(-) as bordism of®Womanifolds with boundary, where
the boundary 1is the total space of a bundle with fibre
Z/p*. . ¥2/p and structure group Z/plZ,. This is done by taking
thew';l‘;;lm;folds with singularities! picture of (n’V*(-) and
"eutting aslong" just the "depth n" singularity set {(which is
& codimension n submanifold) to leave a boundary which is the

total space of a Z/p¥...Z/p-bundle (with the appropriate

U-orientation structure).
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(1) Definition of maps in the triangle

i,, is clear.

J. picks out the tdepth n' singularity stratum and its
normal structure bundle (ngiwLLLLB'M)J in the notation
of 4.5) "

k, tekes a Z/plZ -bundle which is a U-manifold to the
total space of the assoclated bundle with fibre

7,/ px W’fﬁz_‘ p.(which is an®'V-manifold).
v ojeld goum

(11) Exactness of the triangle

(:)-JLaCD (The proofs will be glven for

k\ ;/3 (n- )v * ___M___>(n) V*
®

AN

Tl MUAB(Z/PVE)T)
S
but will extend immediately to

the bordism of any X)

(:): By definition ker 1= elements of %™ that cobord to

zero if we allow depth n singularities. Let Meéeker 1 :=-

-depth n singularity

k N (cobordism of M to zero in®W¥*)
by
Me

Cutting slong the depth n singularity in N gives us a

cobordism in®W* of M to the total space of a Z/p*...*Z/p=

~-bundie.i.e. ker i<s Im k.

Conversely, given M¢ Im k, M is the total space of a

Z/p*...*Z/p-bundle, and then Mibase 1s a cobordism of

M to zero in ™Mv*, i.e. Im k ¢ ker i.
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(:): ker J=elements of "W* that have & cobordism to zero of

the depth n singularity stratum and its normal bundle.

Use the plcture explalned above ofﬁqv* as elements of
(v0y* with boundary, where the boundary i# the total space

of & 2/p*..s*%/p-bundle (and regerd cobordisms in )y ¥

o

similarly).

Let M € ker j

SN

)

boundary =total space

51\4 of Z/E%...*Z/p— $M to zero as
A"

"bundle a Z/p*o [ ] o* Z/p-
\ﬂf——’

-~bundle
Congider the manifold P formed

from (M%"N)x I :-

- pushed around
corner to side

- of pH

(Use standard sngle-stralight-

-ening techniques of e.g.

Conner & Floyd (r7) for this
The copy of N on the "side" of P is the total space of a
Z/p:iééfz/pnbundle end so may be regarded as a depth n
singulerity in P; thus P gives a cobordism in®™W* of M to
My, N 1l.e. a cobordism of M to an element in Im 1 .,

lees ker j<» Im 1 (Im 1< ker j 1is trivialito

prove}
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Ci): ker k= Z/pw..KZ/p- bundles whose total space cobords to
\—-—f"——J

b
zero as an element of WX,

\R
' N
7% N
cobordism to zero

bundle

Using the description of elements of My¥ we used for (:]

N represents an element of&qv* which has the glven

7./p%. . FZ/p-bundle as a neighbourhood of its depth n
AN

singularity set. i.e. ker k< Im J.

Exactly the same dlagram has an obvious Interpretation to

prove Im j<» ker k, completing the proof of the theorem. !

Remark 4.7.2 One should be able to adapt this proof to prove

that we have a corresponding cofibratlon triangle of spectras,
which would glve an alternative proof that the theoriesﬁﬂv*(-}

are homology theories (by induction).

Remark 4.7.3 In the proof of 4.7.1 exactness at (:) 1s the

most difficult to visuallse, s0 we gilve an example:-

Let M be

Z/2xZ/2-singularity

-singularity
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The 2/2%Z/2-slingulsrity in M cobords to zero:
G

We show how N can be used to cobord M to a manifold with

just Z/2-singularities; the plcture of M we need to use is

with the 2/2%%Z/2-singularity ‘cut out':

i.e. M ls:

P= (My N)xI 1is a manifold with 7/2-singularities, having
boundary two coples of Mvy,N. For one of these coples we regard
N {which 1s the totsl space of a Z/2%Z/2~bundle) as belng a
2/2%Z/2~singularity in P. For the other copy we regard N as
part of My,N, a manifold with Z/2-singulerities. Thus P
represents a cobordism in ®V* of M to My,N (e Pv¥), On the
next page we picture P as a menifold with 2/2 and 2/2+%/2~

singularities i«



Cobordism

72/2x2/2 singularity

M VSM

i

(YV-manifold}

66
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4.8 The Mock-Bundle Approach to Cobordism Theories

Having defined ™V-manifolds one may define the cohomology
theories MW¥(-) either, as I have done, in Quillen's "proper
oriented map" manner, or as cobordism of mock-bundles over X
with blocks™V-menifolds (see Rourke & Sanderson (35} for
definitions and propertiles of mock-bundles); mock-bundles have
the advantage that there are quick proofs that the geometrically
defined theories ®v*(-) are cohomology theories (one only has
to check the 'Suspension!,'Extension'!, and 'Glue' axioms of
Rourke & Sanderson (35)) and also one has a canonlcal A~spectrum
for ®Wv*(~). The disadvantage as far as we are concerned 1s
that mock-bundles are defined on P.L. or cell complexes and as
we have only to deal with X a manifold it seems neater to avoid
complications of cell-decomposition etec., I have compromised
by using Quillen's type of definition but only outlining the
proofs that the theories are cohomology theories {(these proofs
belng clear in principle but tedious in detall); however some
extra geometrlc insight 1s to be gained from the mock-bundle
approach: e.g. conslder the "Glue" axiom for cohomology theories
(Rourke & Sanderson (35)) which shows us that once ‘unlabelled!
singularities are allowed in the blocks, self-intersecting

singularities must be allowed if the theory is to satisfy "Glue".

"Glue H]

Y

'unlabelled! singularities self-intersecting

singularity
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5 Caleulation of W™

In this chapter we calculate V™ as an abelian group and
as a U -module. This is included because 1t 1s easlly accessible
using Conner & Floyd's technlques but in fact we shall not
need the results for the following chapters.

Recsgll that 4.7 with n=l gives the exact trlangle:

U*-———————>w 1 degree O

‘K\\\\ ;//// j degree -1

Uy{BZ/p) k degree O

The structure of Ux(BZ/p) as an abelian group and as a
Ue-module was determined by Conner & Floyd (o) & (i1)). (Some
of their results are only stated for5L$BZ/p) but their methods
give preclsely analogous results for U,(BZ/p). Kamata (22) gives

a proof (22) using the formal group law on U*(-) which 1s nest

algebraically (but less geometric).

5.1 “V* as an abelian group

Let x,, be a set of polynomial generators of U*; and let
r;(p) denote the subring generated by those x,;with ifp-1 (so
that U*e [ (p)[cPt']).

A set of U*-module generators for Us(BZ/p) is given by
the classes 3&W6Umﬁ§B2/p), where ¥,, ,denotes the class:-

S /p < BL/p
N.B. As we wish to follow Conner & Floyd as closely as possible
it is necessary to use & different action of Z/p on él-lthan

that employed so far. Thus, for the purposes of defining the

only, we use the action of Z/p on ck glven by:~

MEIJ' 4Tk
)F¥>(€%‘ ﬂ?z é?é,...,e z e'z,elz, ...
441

Tt

(21121:233000934:%: net? 00

(Caution: Kamata uses a standard action on C summed k times

r

instead of this, as we do elsewhere.)
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Theorem 5.1.1 {Conner & Floyd (10)§36.5, Kamata (21})

There 1s an isomorphism
Z 0 ) ———> U {(B%Z/p)
@ k=0 u"'%-ﬂ”r’(p) pIg /p

2{H-h Y

@ is given by @(h;'[h_h%:‘Y)_(n_k)'YZ_ht;
Froof Conner & Floyd (10) l

As U ;=0 and H,,. BZ/p;Z2)= 0 the Atiyah~Hirzebruch spectral

sequence H*(Bz/p;U*)ﬁ??U*(BZ/p) at once glves us that

UWM(BZ/'p); Upen = Ux and our exact trisngle becomes the long

exact sequence:
I &': by ey m :J‘:. e ks
U B U, (B2/D) S U i U (B2/D) = U

k,takes a Z/p~bundle to its total space so 1s just 'xp':U, —>U
Uy =0 and k,injective = a)VaM-‘—O

Thus our long exact sequence becomes the short exact sequence:

L_w & :
O.—..; U*/pU*“‘"“"; V*—'—; U*__J(BZ/p)'—->O aooc.ooo‘@

By 6.1.1 U,, (B%Z/p) is generated as an abellan group by elements

¥ pE'\/r—J +l

dh_m).ylmﬂ + Denote vy Y;(A-m)'YzM,> the cyclic

of order p“=
subgroup generated by this element. Let DW/ZN denote the class

in Yy __ of D*” with its boundary identified under the free Z/p-

action. (So that (B )= y,.. in ().

We shall know “V* as an abelian group, once we determine

Lt Lmt
the order of &/m—m) .D ;N and once we can find <{(D) /~7f\ (g*“/pU )

n+l

for these glve us the group extension @ .

Recall,the order of y, U, (BZ/p) is p” (a- [m/p-131) (by
5.1

Dt I
Lemma 5.,1.2 The order of {zﬁ\ D /o is p‘” 1f 2me2 =23 (p-1)
) for some j

p? otherwise
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Proof We shall just give the proof for DA as the case

foré;%wg$§ follows at once by the same arguement.

J (pa,ﬁ-n}” )= Pﬂb Vamn® O
80 pQDTZ;eimage of 1 in CD
and thus p B =0
i

so 1t suffices to show that p“B /. {r#o ¢ v .. if emt2=(2p-2)j

=0 Wy if not

FECY o

afp-t
(1) Case of Dr/L

Consider the Z/p-sction on CP' given by:
[2,52,5000zp]t> [z,,sz,...,ﬁgrj (¢ :(;vg@ )

This sction has p fixed points: [0,..4,0,1,0,...,0]

The normsl bundle to each fixed point has a sphere ST with

the standard Z/p-action described at the start of 5.1,

(This action is used by Conner & Floyd ((10)§35) to obteln a
cobordism of py,,.,to zero in quﬁz/P)° They remove a neighbour-
-hood of the flxed polint set and regard the rest as a cobordism
to zero of a free Z/p-manifold. In fact they obtain all the

relatlons in U (BZ/p) by this sort of technique)

A

Conslder CP
Neighbourhood
of flxed point

free %Z/p-action

Wy is bordism of menifolds with free Z/p- action on the
boundary. Thus by regarding the shaded pert in the dlagram as
"free Z/p-actlion on the boundary of the cobordism" we may
interpret the plcture as a cobordlsm in.mv* of pﬁTZV to Cp" .

(We know CP™'+ 0 Uyp/py "V, )
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2.
(11) Case of U /~ wlth 2n< 2p=2

Conner & Floyd show in thelr proof ((0)§36.1) that there
is a manifold V™ with Z/p-asction having p fixed points and
standard Z/p-actions on the spheres around these fixed polnts.
(V**1s constructed by interpreting a cobordism to zero of
P¥,,., in U, (BZ/p}.)  They also show that this v 1lies in
pUon (since otherwise their construction ((tg) £35.2) would

glve an element of U, (BZ/p) of order > pe)

n i
Using V'"x I instead of CP' x I in the picture for (i)

we have g cobordism in y* of pD”‘/N to V,, (= 0e¢ U*/pU s {”V* )
*

(111) Case of D"/~ for general n
&

Write 2n=2j{p-l)+2m (m<p-1)
Take VP™ as in (1i) and considger (CP™ )" % V™™ with the dlagonal

action of Z/p (from those of (1) & (1i) ). This has l:>dr><\1;>=p"r+|

A
K

fixed points. Now the plcture ((GPP"' )*x V)x1 glves a cobordism

{1 zn

in Ov* or MDA to (cPTT )Tk v

If m#0 then by (11) V20 e(U./ e Ve )

. E
&+l .=

80 p D7~ =0 ‘EU,V*Q

If m=0 then by (1) p* D7~ =(cB™)'# 0 «(Us/ er V) ,
*

Lemma 5.1.2 allows us to divide the abelian group generator
of ™* " into three classes:
(a) The generators of U,,(BZ/p) which split in @ to give
elements of {'V*™? These gilve <d’z(~k"DZk?q> for 2k+2+4 2j(p-1)
(b) The generators of U,.,(BZ/p) which when 1ifted to “V***in @
have ordsr incressed by p. These give CKA‘E)DM';N? for
2k+2 =2)(p-1).
(¢) The remaining generators of U“‘l/PquOt included in (b).

These are Cu(P) (since the proof of 5.1.2 gives

T T e |
(cpP )= D“/')N in “* ),



72
Thus by S5.1.1 and 5.1.2 we have;

Theorem 5.1.3 There 1s gn isomorphism of abelian groups:-

@ 2 {E/n-h)(%/r-ﬂﬂrﬂ(g}} k—"d{r{')‘in& I{“/ 7*1- "S@ zmz(l/hu p)' Mﬂ

h#yl’r"ﬂ i oL hiin

(corresponding to {a) (b) (c) )
The isomorphism is given by:

4 2ke2 [ 2k " l
@ X -'k) 1( k') Xzan "“""‘3’3;“_,,}) /o +Xm-a')D /flv *&/Mﬂ

5,2 My* g5 g Ux -module

We shall adapt Conner & Floyd's results (10) on the structure
See
of Ux(BZ/p) as a Ug-module. Milnor (w) shows that for each
odd prime p there exlst polynomial generaters Kok of U¥ having

all Chern numbers divisible by p. First we examine these.

Theorem 5.2.1 Let I(p) denote the ideal of U of &ll manifolds

with all Chern numbers divisible by p « Then I{p) is generated
by x,=p polnts & X;,,"-z(k = 1,2,000)

Proof (Conner & Floyd (o) §41)

There are various pmwperties of L(p) which should have geometrica:

significance for the theories ™v*:

Theorem 5.2.2 I(p)= ideal of U™ of those bordism classes

admitting a representative with a Z/p-action having a trivial
normal bundle to the fixed point set. ("trivial normal bundlie"

means a sum of (trivisl vector bundle}® (1 dim. representation
of Z/p) )

Proof Conner & Floyd (10) ¢ 42.

Theorem 5.2.3 Let 1, be the ideal of U™ generated by x 2K, p e
X,y Denote by SF{(Z/p)" ) the 1desl of U'of those classes
admitting representatives with fixed-point free (Z/p)“ -~gctions
Then SF((2z/p)")=1,

Proof Floyd (18) or tom Dieck (14).
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Conner & Floyd ((10) § 46) use 5.,2.2 and related results to find
the 3 ~module structure of 5 (BZ/p). We use their methods to
calculate "V* as a Ug-module. We follow them by defining,
inductively, manifolds M™™,k =1,2,... each with a Z/p-action
t as follows:

Definition 5.2.4 M~ is a manifold with %/p-action t, having

p fixed points, glven by teking a cobordism of py, to zero

in U, (BZ/p) and "filling in the p coples of D" ":-

free Z/p-action

cobordism N of py, to zero
in U, (B%Z/p)
M= Ny pU
lin ]
The Z/p-action t on M* is defined to be that on N

extended over the discs so as to have a single flxed point

at the centre of each disc,

Now suppose ¥, M, ... , M*" have all been defined,
each with s Z/p-action t. We show how to define M**'%,
Consider D'y M*" with the action 7, of Z/p: % (x,¥) = (px,7)
(f the natural action of 2/p on D*<»C )
Also conslder Dﬁ<m‘k with the Z/p-action Tl:’gﬁx,y)==(Px,ty)
Then T, and T, restricted to the boundary S%(Mzkgive free actions
of Z/p and hence define elements [%,,5'x M*]1,[T,,s'« u™] 1n

U, (B2/p).

Lemma 5.2.5 (Conner & Floyd (1#)) These are equal as elements

of U,,,(BZ/p).
Proof Conner & Floyd ({10} § 35.2) l
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i.et the cobordism of 5.2,.,8 be[ﬁf, Banil (T a free Z/p-action)
2h 2 2k
, D% M i [t ,Dxu
] T,' ’B'lk-r?.:] 1? ]
[z,,s'x u**] [7,,8"%u %]

Definition 5.2.6 {Conner & Floyd (i) )

2kt

i \
Wt 15 defined to be the union (U MV wB U, ., (U )
htl
given by the pilcture above. The action t of Z/p on M 1s

defined to be that of ¥ ,T,7T, on the appropriate parts.

Proposition 5.2.7 (Conner & Floyd (10))

The fixed point set of t on M™'is [W*VEM™Jv[i*]v ...
Proof From the left end of the plcture we have the fixed
point set of %, = M- (by definition of T,)
From the right end we have the fixed point set of T
which 1s the fixed point set of [t,M”"]

Thus the result follows by induction on k, E

Note that by its definition the gction t has trivial
normal bundle to its filxed point set (see 5.2.2 for what this
means ) and so by cutting out a neighbourhood of the filxed
point set of € on Mﬂuzconner & Floyd interpret [ﬁ, Muui]as

representing a cobordism:-

(3 b~ k.
v 0] -3, D]+ L (1) Py, s 0 dn U, (BZ/D)  ..e.l(B)

(Keamata (v») deduces similar relatlons algebralcally: let * be
the Z/p-bundle Shutua é“?z/p. The assoclated complex line

bundle 3 has 3@..@I=trivial bundle; thus p.log ,(e,(3))=
P
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where ].ogwh denotes the logarithm of the canonical formal group
lew on U*(-). Now Polncaré duelity for s"‘?z/p relates yym to
(eu(E)Jw‘}and we know the coefficlents of log yexpllicitly
(Mishechenko (5?)), 50 p.logw(eu(f\)ﬁ 0 glves a series of
relations by tsaking different n. These are the same as the
relations @ o)

+

- Thet2
Just as we did in 5.1.2 for cef 'x I, we examine M %1

with the action t and interpret 1t as a cobordism:
: 2k~ k . s i ¢
D/ ]~ D*A S Tte. et (1) p I =[] 1 WL (B

Comner & Floyd {(10) show that the relatlons @ generate
the relations of Uy (BZ/p) and slso that the elements [Mlm]
and p generate I(p) as an ideal of U¥, (Their proof is for

SLABZ/p) but applies equally for U,(BZ/p).) We deduce:

- ke
Theorem 5,2.8 Let z, = [a*] - DY o[ Jre oot (-1) DD e

Then ""V* is isomorphic to the free U¥-module generated by

1, D*/ny D%nyeeey D, vus quotiented by the (free) U'-sub-
-module generated by 2Z,5D, Z,, Z,; 009, Ty v e

Proof By @ all the relations are necessary. Suppose there
were another relatlon, say:

DY 8] 4 DA LN e D T 0] e (D

Then, under the map §:"V*—> U, _(BZ/p) (from the s,e.s. (1))
this gives:

ytr {:Nm] -V [NZ‘E'I]‘* ce stV . [N"‘] =0 .. ...@

But all the relations in Uu(BZ/p) are generated by the relations
(2) . Thus (5)must have left hand side linearly dependant on the
l.hes.'s of @.

So @has l.hes. dependant on the l.h.s.'s of @.

Therefore the only new relations introduced by @relate element:

)
on the r.h.s.,i.e. in image (U*w-)“V*), but all such are generated

byzo. l



