PROOFS IN CHAPTER 6

Lemma 6.1 There are \(n! \) permutations of \(\{1, 2, \ldots, n\} \).

Proof Given a permutation in 2-line notation

\[
\begin{pmatrix}
1 & 2 & 3 & \ldots & n \\
a_1 & a_2 & a_3 & \ldots & a_n
\end{pmatrix}
\]

there are \(n \) choices for \(a_1 \), leaving \(n - 1 \) choices for \(a_2 \), \(n - 2 \) choices for \(a_3 \),..., 1 choice for \(a_n \). Hence there are \(n! \) choices in all.

Lemma 6.2 Let \(\alpha \) be a permutation (of \(\{1, 2, \ldots, n\} \)) then there exists a positive integer \(k \) such that \(\alpha^k = \iota \).

Proof \(\iota, \alpha, \alpha^2, \alpha^3, \ldots \) cannot all be different as there are only \(n! \) different permutations of \(\{1, 2, \ldots, n\} \). Hence there exist positive integers \(r < s \) with \(\alpha^r = \alpha^s \).

Since \(\alpha \) is a bijection it has an inverse \(\alpha^{-1} \). From the equation above we have:

\[\alpha^r \alpha^{-1} = \alpha^s \alpha^{-1} \]

That is,

\[\iota = \alpha^{s-r} \]

Thus \(\alpha^k = \iota \), where \(k = s - r \).

Lemma 6.3 Let \(m \) be the order of \(\alpha \). Then \(\alpha^k = \iota \) if and only if \(m \) divides \(k \).

Proof Suppose \(m | k \). Then \(k = qm \) for some \(q \). So

\[\alpha^k = (\alpha^m)^q = \iota^q = \iota \]

Conversely suppose \(\alpha^k = \iota \). By the division algorithm, \(k = qm + r \) some \(0 \leq r < m \). So

\[\iota = \alpha^k = (\alpha^m)^q\alpha^r = \iota^q\alpha^r = \alpha^r \]

But \(m \) was chosen to be the smallest positive integer such that \(\alpha^m = \iota \). So \(r = 0 \). Hence \(m | k \).

Lemma 6.4 Every cycle of length \(r \) has order \(r \).

Proof Let \(\alpha = (a_1 \ a_2 \ldots \ a_r) \). Then \(\alpha^j \) sends each \(a_k \) to \(a_{k+j} \), where \(k + j \) is counted modulo \(r \). Hence when \(0 < j < r \), \(\alpha^3 \neq \iota \), but for \(j = r \) we have \(\alpha^r = \iota \). So the order of \(\alpha \) is \(r \).

Lemma 6.5 Disjoint cycles commute, i.e. if \(\alpha = (a_1 \ldots a_r) \) and \(\beta = (b_1 \ldots b_s) \) are disjoint cycles then \(\alpha \beta = \beta \alpha \).

Proof Let \(\alpha = (a_1 \ldots a_r) \) and let \(\beta = (b_1 \ldots b_s) \), and let \(x \) be any \(a_i \) or \(b_i \).

If \(x = a_i \), then

\[x\alpha\beta = a_i \alpha \beta = a_{i+1} \beta = a_{i+1} \]

and

\[x\beta\alpha = a_i \beta \alpha = a_i \alpha = a_{i+1} \]

Similarly if \(x = b_i \), then

\[x\alpha\beta = b_{i+1} = x\beta\alpha \]
Thus \(x\alpha \beta = x\beta \alpha \) for all \(x \) and hence \(\alpha \beta = \beta \alpha \).

Proposition 6.6 Let \(\alpha \) be a permutation of \(S \) and let \(\sim \) be the relation on \(S \) defined by \(x \sim y \Leftrightarrow y = x\alpha^k \) for some \(k \in \mathbb{Z} \). Then \(\sim \) is an equivalence relation, and the equivalence classes are the orbits of \(\alpha \).

Proof For all \(x \in S \), \(x \sim x \) since \(x = x\alpha^0 \).
For all \(x, y \in S \), \(x \sim y \Rightarrow y = x\alpha^k \Rightarrow x = y\alpha^{-k} \Rightarrow x \sim y \).
For all \(x, y, z \in S \), \(x \sim y \) and \(y \sim z \Rightarrow y = x\alpha^k \) and \(z = y\alpha^l \Rightarrow z = x\alpha^{k+l} \Rightarrow x \sim z \).
Hence \(\sim \) is an equivalence relation. The equivalence class of \(x \) is \(\{x\alpha^k : k \in \mathbb{Z}\} \), in other words it is the orbit of \(x \).

Proposition 6.7 Every permutation can be written as a product of disjoint cycles.

Proof Let \(\alpha \) be a permutation of \(S \) and let \(E_1, \ldots, E_k \) be the orbits of \(\alpha \). Then, restricted to each \(E_i \), the permutation \(\alpha \) is a cycle \(C_i \). The \(E_i \)'s are disjoint by 6.6 (since \(\sim \) is an equivalence relation). Hence \(\alpha = C_1C_2 \ldots C_k \) (the product of the cycles \(C_1, \ldots, C_k \)).

Proposition 6.8 The representation of any \(\alpha \) as a product of disjoint cycles is unique, up to the order in which the cycles are written down.

Proof Each cycle corresponds to an orbit, so we get a unique collection of cycles. But as these cycles are disjoint it does not matter the order in which we write them down.

Proposition 6.9 Any permutation is a product of transpositions.

Proof It suffices to show that each cycle can be written as a product of transpositions. But \((a_1 a_2 \ldots a_r) = (a_1 a_2)(a_1 a_3)\ldots(a_1 a_r) \).

Proposition 6.10 Any permutation is a product of basic transpositions.

Proof By 6.9 we just have to show that any transposition \((i j) \), with \(i < j \), can be written as a product of basic transpositions. But
\[
(i j) = (i i + 1)(i + 1 i + 2)(j - 2 j - 1)(j - 1 j)(j - 2 j - 1) \ldots (i + 1 i + 2)(i i + 1)
\]

Proposition 6.11 \(sgn(\alpha \beta) = sgn(\alpha) sgn(\beta) \) for any permutations \(\alpha \) and \(\beta \).

Proof (Sketch only)
First we observe that if \(t \) is a basic transposition \((i i + 1) \), then \(sgn(t) = -1 \), since \(t \) changes the order of just one pair of elements.
Next we observe that if \(\alpha \) is any permutation and \(t \) is a basic transformation, say \(t = (i i + 1) \), then
\[
(*) \quad l(t\alpha) = l(\alpha) + 1 \text{ if } i\alpha < (i + 1)\alpha \text{ and } l(t\alpha) = l(\alpha) - 1 \text{ if } i\alpha > (i + 1)\alpha.
\]
This is because the effect of \(t \) is to interchange just two of the columns in the 2-line representation of \(\alpha \).
Thus \(sgn(t\alpha) = -sgn(\alpha) = sgn(t) sgn(\alpha) \).
Since any permutation \(\alpha \) can be written as a product of basic permutations \(\alpha = t_1 \ldots t_p \) we may now deduce inductively (using \((*)\)) that
\[
sgn(\alpha) = sgn(t_1 \ldots t_p) = sgn(t_1) \ldots sgn(t_p) = (-1)^p
\]
If \(\beta \) is another permutation, written as a product of basic permutations \(\beta = s_1 \ldots s_q \) we also have
\[
sgn\beta = (-1)^q
\]
Since $\alpha \beta = t_1 \ldots t_p s_1 \ldots s_q$ as a product of basic permutations we also have

$$\text{sgn}(\alpha \beta) = (-1)^{p+q}$$

Thus $\text{sgn}(\alpha \beta) = \text{sgn}(\alpha)\text{sgn}(\beta)$.

Corollary 6.12 A permutation α is even if and only if it can be written as a product of an even number of (not necessarily basic) transpositions.

Proof Suppose $\alpha = t_1 \ldots t_q$, where t_1, \ldots, t_q are transpositions (not necessarily basic). For any transposition t we have $\text{sgn}(t) = -1$, since t can be written as a product of an odd number of basic transpositions (by the proof of 6.10). Now, by 6.11,

$$\text{sgn}(\alpha) = \text{sgn}(t_1) \ldots \text{sgn}(t_q) = (-1) \times \ldots \times (-1) = (-1)^q$$

which is $+1$ if and only if q is even.