
Chapter 1

Continuous time and discrete time dy-
namical systems

This course will be largely about discrete time dynamical systems, that is to say iterated maps R → R,

or R2 → R2, or C → C etc, but we start off with a brief review of continuous time dynamical systems

(ordinary differential equations). This will give us a historical perspective, and will also provide a good

starting point for our study of the qualitative features of iterated maps in the following chapters.

Definition

A continuous time dynamical system on R2 is a pair of differential equations(
ẋ
ẏ

)
=

(
f1(x, y)
f2(x, y)

)
where f1 and f2 are functions R2 → R. One can think of these as defining a vector field on R2, that is to

say they assign a vector: (
f1(x, y)
f2(x, y)

)
to each point (x, y) ∈ R2.

Examples

(1)
(

ẋ
ẏ

)
=

(
x
y

)
(2)

(
ẋ
ẏ

)
=

(
−y
−x

)
‘Solving the differential equation, with initial condition (x0, y0)’ means finding a path (x = x(t), y = y(t))

with x(0) = x0) and y(0) = y0, such that ẋ = f1(x, y) and ẏ = f2(x, y) at every point on the path. In

other words as we travel along the path, at each point our velocity is the vector assigned to that point.

This path is known as the orbit of the initial point (x0, y0).

Examples

(1)
(

ẋ
ẏ

)
=

(
x
y

)
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with initial condition (x0, y0) 6= (0, 0) has solution:(
ẋ
ẏ

)
=

(
x0e

t

y0e
t

)
And

(2)
(

ẋ
ẏ

)
=

(
−y
−x

)
with initial condition (x0, y0) 6= (0, 0) has solution:(

ẋ
ẏ

)
=

(
r cos(t + α)
r sin(t + α)

)
where r =

√
(x2

0 + y2
0) and α = arctan(y0/x0).

Theorem (Existence and uniqueness of solutions of differential equations)

Let f : Rn → Rn and x0 be such that:

(i) f is differentiable at x and ∂f/∂x is continuous at x for all x ∈ Rn, and

(ii) f(x0) 6= 0.

Then the equation ẋ(t) = f(x) has a unique solution x(t) with initial condition x0, on some interval

t ∈ [0, T ] with T > 0.

This is a key theorem of 19th century analysis. We are not going to prove it, but it is important to

understand why it is true, which is that one can ‘join up the arrows of a vector field to make a path’.

Note that we need f(x0) 6= 0 since we need to know in what direction to start our path. Also note that

in general we cannot say how large T is, because if we reach a point x where f(x) = 0 we no longer have

a unique direction in which to continue our path.

In practice we shall be interested in qualitative features of dynamical systems, rather than analytic

formulae for solutions. By drawing ‘phase portraits’ of some examples we can see such features.

(i)
(

ẋ
ẏ

)
=

(
x
y

)
has a repelling fixed point at (0, 0) since all the vectors in the vector field point directly away from this

point.

(ii)
(

ẋ
ẏ

)
=

(
−x
−y

)
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has an attracting fixed point at (0, 0).

(iii)
(

ẋ
ẏ

)
=

(
−y
x

)
has a neutral fixed point at (0, 0) as the orbits of the system are circles centred at this point.

(iv) The system r = r(1 − r), θ̇ = 1 (in polar coordinates) has a repelling fixed point at (0, 0), and the

unit circle is an attracting cycle.

For continuous time dynamical systems in the plane there can be fixed points which are attracting,

repelling or neutral, and there can be cycles of each of these three types. But the situation is much more

complicated for continuous time dynamical systems in R3. Here we can see strange attractors.

The Lorenz equations

These are equations devised by Edward Lorenz in his 1963 model for atmospheric convection (his param-

eters (x, y, z) are not space co-ordinates):

ẋ = σ(y − x)

ẏ = rx− y − xz

ż = −bz + xy

σ = 10, b = 8/3, r = 28 were Lorenz’s original parameter values. He ran the same computer program

several times with almost the same initial conditions and found totally different long-term behaviour.

The system has a ‘strange attractor’ which exhibits ‘sensitive dependence on initial conditions’. This is

an example of the so-called ‘butterfly effect’. It is virtually impossible to give detailed weather forecasts

more than a few days ahead as we can never know the initial conditions precisely enough to do so.

We shall not attempt to analyse the Lorenz equations in detail: instead we shall start with much simpler

systems:

Continuous time dynamical systems on R

The are ordinary differential equations, of the form ẋ = f(x). Provided f is of class C1 (that is to say

differentiable, with continuous derivative) the existence and uniqueness theorem gives us a unique orbit

x = x(t) for each initial condition x0 such that f(x0) 6= 0, for t in some interval [0, T ].
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Examples

(1) ẋ = ax for some constant a > 0.

Examination of the phase portrait of this map shows a single repelling fixed point, at x = 0.

We can compute the analytic solution of the system:∫
dx

x
=

∫
adt ⇒ ln(x) = at + c ⇒ x = x0e

at

(2) ẋ = x(1− x)

Here the phase portrait exhibits a repeller at x = 0 and an attractor at x = 1.

Analytic solution: ∫
dx

x(1− x)
=

∫
dt ⇒

∫ (
1
x
− 1

x− 1

)
dx =

∫
dt

⇒ ln
x

x− 1
= t + c ⇒ x

x− 1
=

x0

x0 − 1
et ⇒ x =

x0e
t

x0et − x0 + 1

Note that just because a differential equation ‘has a solution’ does not mean that it is easy to find a

formula for the solution in terms of polynomials, trigonometric functions etc - indeed there may be no

such formula!

Given any particular f : R → R it is easy to draw the phase portrait of the dynamical system ẋ = f(x)

and so obtain a qualitative description of the behaviour of the system, even if there is no analytic formula

for the system: there are fixed points where f(x) = 0, the vector field points to the right where f(x) > 0,

and it points to the left where f(x) < 0.

There is not much more to say in general about continuous time dynamical systems on R, except that

there are four types of fixed point (attractor, repeller, neutral ‘right shunt’ and neutral ‘left shunt’) and

there are certain obvious rules about the order in which these occur along the real line because of the

directions of the arrows at each type of fixed point (for example two attractors must be separated by a

repeller). There can be more complicated behaviour with discrete time systems on R.

Definitions

A dynamical system consists of a set of states (for example points of R or of R2), together with a time

evolution rule.

(i) For discrete time t ∈ Z (or t ∈ N ∪ {0}) the evolution rule is of the form xt+1 = f(xt) (which we

usually write xn+1 = f(xn)).
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(ii) For continuous time t ∈ R (or t ∈ R≥0) the evolution rule is of the form ẋ = f(x).

Every continuous time dynamical system gives rise to a discrete time system by taking the ‘time one

map’.

Example

x = ax

This has solution x(t) = x0e
at, so

x(t + 1) = x0e
a(t+1) = x(t)ea

Thus the ‘time one’ map is:

xn+1 = eaxn

There is another way to obtain a discrete time system from a continuous time system, called the method

of Poincaré sections.

Example (
ṙ

θ̇

)
=

(
r(1− r)

1

)
Consider the section S = R≥0 (the non-negative half of the x-axis). The first return map S → S is the

map defined by sending each x0 ∈ S to the point of S where the orbit of x0 under the system first returns

to S.

In this example the system has an analytic solution:

r =
r0e

t

r0et − r0 + 1
, θ = θ0 + t

so the first return map applied to x ∈ S is:

x → xe2π

xe2π − x + 1

since the the initial condition is r0 = x, θ0 = 0 at t = 0, and the first return to S of the orbit of x ∈ S

occurs when θ = 2π, i.e. at time t = 2π.

Poincaré sections take us from

continuous time dynamical systems on (n + 1)-dimensional spaces

to

discrete time dynamical systems on n-dimensional spaces
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For much of this course we shall be looking at discrete dynamical systems on R and R2, but the results

we obtain can also be used to say things about continuous time dynamical systems in dimensions 2 and

3. (We remark that there is also a way to go in the other direction - a discrete time dynamical system

can be ‘suspended’ to obtain a continuous time system on a space one dimension higher).

Here is an example of a family of discrete time systems on R we shall be looking at in more detail in later

chapters:

The logistic map is the map xn+1 = µxn(1 − x0) (µ > 0 a constant). We examine its behaviour by

‘graphical analysis’ (plotting the orbit of a point x0 on the x-axis by drawing a vertical line upwards from

x0 till we hit the graph of y = µx(1 − x), then proceeding horizontally till we hit the graph of y = x,

then vertically downwards till we hit the x-axis at the next point of the orbit, x1). We observe:

(1) For µ = 1 the logistic map has an attracting fixed point at x = 0 and every x0 ∈ [0, 1] has orbit

tending to this attracting fixed point.

(2) For µ = 2 the point x = 0 has become a repelling fixed point, and every x0 ∈ (0, 1) has orbit tending

to an attracting fixed point at x = 1/2.

We remark that whether x = 0 is an attractor or a repeller depends on the slope µ of the graph of

y = µx(1− x) at x = 0. In the following Chapter we shall be looking more closely at this and prove that

there is a general rule that if x0 is a fixed point of a differentiable function f , then it is an attractor if

|f ′(x0)| < 0 and a repeller if |f ′(x0)| > 0.
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