
Holomorphic Dynamics and Hyperbolic Geometry (February-March 2013)

Assessment Exercises - SOLUTIONS

1. Show that for any a ∈ D the map:

φa(z) =
z − a
1− az

carries the unit circle to itself, and the origin to a point of D, and hence carries the unit disc D isomor-
phically to itself. [HINT: Observe that dividing the numerator and denominator of φa(eiθ) by eiθ/2 gives
an expression of the form ζ/ζ.]

SOLUTION.
We know that z ∈ S1 if and only if z = eiθ for some θ ∈ R. But

φa(eiθ) =
eiθ − a
1− aeiθ

=
eiθ/2 − ae−iθ/2

e−iθ/2 − aeiθ/2
=
ζ

ζ

where ζ = eiθ/2 − ae−iθ/2. However |ζ/ζ| ∈ S1 since |ζ| = |ζ|.
The map φa is a Möbius transformation, so it is a bijection, and since it sends S1 to S1 it must send the
connected component D of Ĉ \ S1 bijectively either to itself or to Ĉ \ D. As φa(0) = −a ∈ D we deduce
that φa is a bijection from D to itself.

2. A finite product of the form

(B) f(z) = eiθφa1(z)φa2(z) . . . φan(z)

with a1, . . . , an ∈ D is called a Blaschke product of degree n.

Show that f is a rational map which carries D onto D and Ĉ \D onto Ĉ \D. Deduce that the unit circle
S1 is completely invariant and hence that the Julia set J(f) ⊆ S1.

SOLUTION.
f is a rational map since it has the form of a polynomial divided by a polynomial. In Question 1 we have
just seen that if z ∈ D then φa(z) ∈ D, and since a product of complex numbers having modulus < 1 also
has modulus < 1 it follows that

(a) f(D) ⊆ D.

From our solution to Question 1 it is also true that if z ∈ Ĉ \D then φa(z) ∈ Ĉ \D, and since a product
of complex numbers having modulus ≥ 1 has modulus ≥ 1 it follows that

(b) f(Ĉ \ D) ⊆ Ĉ \ D.



Similarly if |z| = 1 it follows that |f(z)| = 1, that is

(c) f(S1) ⊆ S1.

f : Ĉ→ Ĉ is surjective (by the Fundamental Theorem of Algebra), so it follows from (b) that f : D→ D
is surjective, and from (a) that f : Ĉ \ D→ Ĉ \ D is surjective.

To prove that S1 is completely invariant we must show that f−1(S1) ⊆ S1 (since we already know that
f(S1) ⊆ S1 by (c) above). However if f(z) ∈ S1 then z ∈ S1, since a product of complex numbers of
modulus < 1 has modulus < 1 and a product of complex numbers of modulus > 1 has modulus > 1.

Since S1 is closed and completely invariant, and the Julia set J(f) can be characterised as the minimal
closed completely invariant set, we deduce that J(f) ⊆ S1. Alternatively one can prove that J(f) ⊆ S1

by applying Montel’s Theorem to the iterates of f on D ∪ (Ĉ \D), to show that D ∪ (Ĉ \D) is contained
in the Fatou set, F (f).

3. If g(z) = 1/f(z), where f is a Blaschke product, show that J(g) is also contained in the unit circle.

SOLUTION.
If g(z) = 1/f(z) then g carries D onto Ĉ \ D and Ĉ \ D onto D. By a similar argument to that in
the solution of Question 2 it follows that S1 is completely invariant under the map g, and hence that
J(g) ⊆ S1.

4. If f is a Blaschke product of the form (B) with n ≥ 2 and one of its factors is φ0(z) = z, show that:
(i) f has an attracting fixed point at 0.
(ii) 1/f(1/z) is also a Blaschke product with one of its factors φ0(z) = z, so f has an attracting fixed
point at ∞ as well as at 0.
(iii) Deduce that J(f) is the entire circle. (You may assume without proof that for any attracting fixed
point z0 all points in the component of F (f) containing z0 have forward orbits which converge to z0.)

SOLUTION.
(i) If n > 2 and f(z) = z.h(z) where h(z) = eiθφa2(z) . . . φan(z), then f(0) = 0.h(0). But h(0) =
eiθ
∏n
j=2(−aj) 6=∞ so f(0) = 0. Thus 0 is a fixed point.

From the rule for differentiating a product, f ′(z) = h(z)+z.h′(z) so f ′(0) = h(0) and therefore |f ′(0)| < 1
(since h(0) ∈ D). So 0 is an attracting fixed point.

(ii) The statement about 1/f(1/z) follows at once from:

1

φa(1/z)
=

1− a/z
1/z − a

=
z − a
1− az

.

But z → 1/f(1/z) is just f conjugated by z → 1/z. So it now follows from (i) that ∞ is an attracting
fixed point of f .

(iii) It follows at once from (i) and (ii) that 0 and ∞ are both attracting fixed points of f . Since the

immediate basins of 0 and ∞ are distinct components of the Fatou set F (f) = Ĉ \ J(f) we know J(f)

cannot be simply-connected (as the complement of any simply-connected subset of Ĉ is connected). But
J(f) ⊆ S1 (by Question 2). So J(f) = S1.



5. Let

f(z) = z

(
z − a
1− az

)
with a ∈ R and |a| < 1 (so f satisfies the hypotheses of Question 4). Let ψ : Ĉ → Ĉ denote the map

ψ(z) = z + 1/z. Show that there is a unique rational map F such that Fψ = ψf : Ĉ → Ĉ. In this
way construct a 1-real-parameter family of non-conjugate quadratic rational maps with Julia set the real
interval [−2,+2], each with a fixed point at∞. (You may assume that J(F ) = ψ(J(f)), or you can prove
this.)

SOLUTION.

ψ(f(z)) =
z(z − a)

1− az
+

1− az
z(z − a)

=
z − a

1/z − a
+

1/z − a
z − a

=
(z − a)2 + (1/z − a)2

(z − a)(1/z − a)

=
(z + 1/z)2 − 2− 2a(z + 1/z) + 2a2

1 + a2 − a(z + 1/z)

=
ζ2 − 2aζ + 2(a2 − 1)

(a2 + 1)− aζ
where ζ = z + 1/z. Thus ψf = Fψ where

F (ζ) =
ζ2 − 2aζ + 2(a2 − 1)

(a2 + 1)− aζ
.

The fact that F is unique follows at once from the requirement that ψf = Fψ, since this tells us that for
every ζ ∈ Ĉ the value of F (ζ) must be equal to ψf(z) for both of the two values of z ∈ ψ−1(ζ).

Since J(f) = S1 by Question 4, and assuming that J(F ) = ψ(J(f) (which can be proved) we have that
J(F ) = [−2,+2] ⊂ R.

The functions F have a fixed point at ψ(0) = ∞. To show that the functions F are not conjugate for
different values of a, it will suffice to compute the multiplier at the fixed point ∞, that is to say the
multiplier of G(ζ) = 1/F (1/ζ) at ζ = 0.

G(ζ) =
1

F (1/ζ)
= ζ.

ζ(a2 + 1)− a
2(a2 − 1)ζ2 − 2aζ + 1

, so G′(0) = −a.

An alternative proof of non-conjugacy follows the fact that the fixed points of F are ∞, 2 and a − 1.
These are distinguishable by the properties that ∞ is outside [−2,+2], that 2 is at one end, and that
a − 1 is in [−2, 2] but not at an end. While there exists a Möbius transformation sending ∞, 2, a − 1
to ∞, 2, b− 1, this transformation will not send the point −2 (the other end of [−2,+2]) to itself unless
a = b.

Comments:

1. There are many ways to prove that J(F ) = ψ(J(f)): one can use any of the characterisations of
J(f) as the closure of the set of periodic points, the accumulation set of any non-exceptional orbit, or
the complement of the equicontinuity set or of the normality set, and show that ψ−1(J(f)) has the same
property for F .

2. The quadratic rational map f in this question has fixed points at 0 and ∞, with multiplier equal to
−a at each, and its Julia set is the unit circle. If we set c = −a/2 − a2/4, so that qc : z → z2 + c has
multiplier at its attracting fixed point equal to −a, the map f can be regarded as a ‘mating of qc with qc’
in the sense of the final paragraph of the final section of the lecture notes.
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