Holomorphic Dynamics and Hyperbolic Geometry (February-March 2013)

Assessment Exercises - SOLUTIONS

1. Show that for any $a \in \mathbb{D}$ the map:

$$
\phi_{a}(z)=\frac{z-a}{1-\bar{a} z}
$$

carries the unit circle to itself, and the origin to a point of \mathbb{D}, and hence carries the unit disc \mathbb{D} isomorphically to itself. [HINT: Observe that dividing the numerator and denominator of $\phi_{a}\left(e^{i \theta}\right)$ by $e^{i \theta / 2}$ gives an expression of the form $\zeta / \bar{\zeta}$.]

SOLUTION.

We know that $z \in S^{1}$ if and only if $z=e^{i \theta}$ for some $\theta \in \mathbb{R}$. But

$$
\phi_{a}\left(e^{i \theta}\right)=\frac{e^{i \theta}-a}{1-\bar{a} e^{i \theta}}=\frac{e^{i \theta / 2}-a e^{-i \theta / 2}}{e^{-i \theta / 2}-\bar{a} e^{i \theta / 2}}=\frac{\zeta}{\bar{\zeta}}
$$

where $\zeta=e^{i \theta / 2}-a e^{-i \theta / 2}$. However $|\zeta / \bar{\zeta}| \in S^{1}$ since $|\zeta|=|\bar{\zeta}|$.
The map ϕ_{a} is a Möbius transformation, so it is a bijection, and since it sends S^{1} to S^{1} it must send the connected component \mathbb{D} of $\hat{\mathbb{C}} \backslash S^{1}$ bijectively either to itself or to $\hat{\mathbb{C}} \backslash \overline{\mathbb{D}}$. As $\phi_{a}(0)=-a \in \mathbb{D}$ we deduce that ϕ_{a} is a bijection from \mathbb{D} to itself.
2. A finite product of the form

$$
\begin{equation*}
f(z)=e^{i \theta} \phi_{a_{1}}(z) \phi_{a_{2}}(z) \ldots \phi_{a_{n}}(z) \tag{B}
\end{equation*}
$$

with $a_{1}, \ldots, a_{n} \in \mathbb{D}$ is called a Blaschke product of degree n.
Show that f is a rational map which carries \mathbb{D} onto \mathbb{D} and $\hat{\mathbb{C}} \backslash \mathbb{D}$ onto $\hat{\mathbb{C}} \backslash \mathbb{D}$. Deduce that the unit circle S^{1} is completely invariant and hence that the Julia set $J(f) \subseteq S^{1}$.

SOLUTION.

f is a rational map since it has the form of a polynomial divided by a polynomial. In Question 1 we have just seen that if $z \in \mathbb{D}$ then $\phi_{a}(z) \in \mathbb{D}$, and since a product of complex numbers having modulus <1 also has modulus <1 it follows that
(a)

$$
f(\mathbb{D}) \subseteq \mathbb{D}
$$

From our solution to Question 1 it is also true that if $z \in \hat{\mathbb{C}} \backslash \mathbb{D}$ then $\phi_{a}(z) \in \hat{\mathbb{C}} \backslash \mathbb{D}$, and since a product of complex numbers having modulus ≥ 1 has modulus ≥ 1 it follows that

$$
\begin{equation*}
f(\hat{\mathbb{C}} \backslash \mathbb{D}) \subseteq \hat{\mathbb{C}} \backslash \mathbb{D} \tag{b}
\end{equation*}
$$

Similarly if $|z|=1$ it follows that $|f(z)|=1$, that is

$$
\begin{equation*}
f\left(S^{1}\right) \subseteq S^{1} \tag{c}
\end{equation*}
$$

$f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is surjective (by the Fundamental Theorem of Algebra), so it follows from (b) that $f: \mathbb{D} \rightarrow \mathbb{D}$ is surjective, and from (a) that $f: \widehat{\mathbb{C}} \backslash \mathbb{D} \rightarrow \hat{\mathbb{C}} \backslash \mathbb{D}$ is surjective.

To prove that S^{1} is completely invariant we must show that $f^{-1}\left(S^{1}\right) \subseteq S^{1}$ (since we already know that $f\left(S^{1}\right) \subseteq S^{1}$ by (c) above). However if $f(z) \in S^{1}$ then $z \in S^{1}$, since a product of complex numbers of modulus <1 has modulus <1 and a product of complex numbers of modulus >1 has modulus >1.

Since S^{1} is closed and completely invariant, and the Julia set $J(f)$ can be characterised as the minimal closed completely invariant set, we deduce that $J(f) \subseteq S^{1}$. Alternatively one can prove that $J(f) \subseteq S^{1}$ by applying Montel's Theorem to the iterates of f on $\mathbb{D} \cup(\hat{\mathbb{C}} \backslash \mathbb{D})$, to show that $\mathbb{D} \cup(\hat{\mathbb{C}} \backslash \mathbb{D})$ is contained in the Fatou set, $F(f)$.
3. If $g(z)=1 / f(z)$, where f is a Blaschke product, show that $J(g)$ is also contained in the unit circle.

SOLUTION.

If $g(z)=1 / f(z)$ then g carries \mathbb{D} onto $\hat{\mathbb{C}} \backslash \overline{\mathbb{D}}$ and $\hat{\mathbb{C}} \backslash \overline{\mathbb{D}}$ onto \mathbb{D}. By a similar argument to that in the solution of Question 2 it follows that S^{1} is completely invariant under the map g, and hence that $J(g) \subseteq S^{1}$.
4. If f is a Blaschke product of the form (B) with $n \geq 2$ and one of its factors is $\phi_{0}(z)=z$, show that: (i) f has an attracting fixed point at 0 .
(ii) $1 / f(1 / z)$ is also a Blaschke product with one of its factors $\phi_{0}(z)=z$, so f has an attracting fixed point at ∞ as well as at 0 .
(iii) Deduce that $J(f)$ is the entire circle. (You may assume without proof that for any attracting fixed point z_{0} all points in the component of $F(f)$ containing z_{0} have forward orbits which converge to z_{0}.)

SOLUTION.

(i) If $n>2$ and $f(z)=z . h(z)$ where $h(z)=e^{i \theta} \phi_{a_{2}}(z) \ldots \phi_{a_{n}}(z)$, then $f(0)=0 . h(0)$. But $h(0)=$ $e^{i \theta} \prod_{j=2}^{n}\left(-a_{j}\right) \neq \infty$ so $f(0)=0$. Thus 0 is a fixed point.
From the rule for differentiating a product, $f^{\prime}(z)=h(z)+z \cdot h^{\prime}(z)$ so $f^{\prime}(0)=h(0)$ and therefore $\left|f^{\prime}(0)\right|<1$ (since $h(0) \in \mathbb{D})$. So 0 is an attracting fixed point.
(ii) The statement about $1 / f(1 / z)$ follows at once from:

$$
\frac{1}{\phi_{a}(1 / z)}=\frac{1-\bar{a} / z}{1 / z-a}=\frac{z-\bar{a}}{1-a z} .
$$

But $z \rightarrow 1 / f(1 / z)$ is just f conjugated by $z \rightarrow 1 / z$. So it now follows from (i) that ∞ is an attracting fixed point of f.
(iii) It follows at once from (i) and (ii) that 0 and ∞ are both attracting fixed points of f. Since the immediate basins of 0 and ∞ are distinct components of the Fatou set $F(f)=\hat{\mathbb{C}} \backslash J(f)$ we know $J(f)$ cannot be simply-connected (as the complement of any simply-connected subset of $\hat{\mathbb{C}}$ is connected). But $J(f) \subseteq S^{1}$ (by Question 2). So $J(f)=S^{1}$.
5. Let

$$
f(z)=z\left(\frac{z-a}{1-a z}\right)
$$

with $a \in \mathbb{R}$ and $|a|<1$ (so f satisfies the hypotheses of Question 4). Let $\psi: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ denote the map $\psi(z)=z+1 / z$. Show that there is a unique rational map F such that $F \psi=\psi f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$. In this way construct a 1-real-parameter family of non-conjugate quadratic rational maps with Julia set the real interval $[-2,+2]$, each with a fixed point at ∞. (You may assume that $J(F)=\psi(J(f))$, or you can prove this.)

SOLUTION.

$$
\begin{gathered}
\psi(f(z))=\frac{z(z-a)}{1-a z}+\frac{1-a z}{z(z-a)}=\frac{z-a}{1 / z-a}+\frac{1 / z-a}{z-a} \\
=\frac{(z-a)^{2}+(1 / z-a)^{2}}{(z-a)(1 / z-a)} \\
=\frac{(z+1 / z)^{2}-2-2 a(z+1 / z)+2 a^{2}}{1+a^{2}-a(z+1 / z)} \\
=\frac{\zeta^{2}-2 a \zeta+2\left(a^{2}-1\right)}{\left(a^{2}+1\right)-a \zeta}
\end{gathered}
$$

where $\zeta=z+1 / z$. Thus $\psi f=F \psi$ where

$$
F(\zeta)=\frac{\zeta^{2}-2 a \zeta+2\left(a^{2}-1\right)}{\left(a^{2}+1\right)-a \zeta}
$$

The fact that F is unique follows at once from the requirement that $\psi f=F \psi$, since this tells us that for every $\zeta \in \widehat{\mathbb{C}}$ the value of $F(\zeta)$ must be equal to $\psi f(z)$ for both of the two values of $z \in \psi^{-1}(\zeta)$.
Since $J(f)=S^{1}$ by Question 4, and assuming that $J(F)=\psi(J(f)$ (which can be proved) we have that $J(F)=[-2,+2] \subset \mathbb{R}$.

The functions F have a fixed point at $\psi(0)=\infty$. To show that the functions F are not conjugate for different values of a, it will suffice to compute the multiplier at the fixed point ∞, that is to say the multiplier of $G(\zeta)=1 / F(1 / \zeta)$ at $\zeta=0$.

$$
G(\zeta)=\frac{1}{F(1 / \zeta)}=\zeta \cdot \frac{\zeta\left(a^{2}+1\right)-a}{2\left(a^{2}-1\right) \zeta^{2}-2 a \zeta+1}, \text { so } G^{\prime}(0)=-a
$$

An alternative proof of non-conjugacy follows the fact that the fixed points of F are $\infty, 2$ and $a-1$. These are distinguishable by the properties that ∞ is outside $[-2,+2]$, that 2 is at one end, and that $a-1$ is in $[-2,2]$ but not at an end. While there exists a Möbius transformation sending $\infty, 2, a-1$ to $\infty, 2, b-1$, this transformation will not send the point -2 (the other end of $[-2,+2]$) to itself unless $a=b$.

Comments:

1. There are many ways to prove that $J(F)=\psi(J(f))$: one can use any of the characterisations of $J(f)$ as the closure of the set of periodic points, the accumulation set of any non-exceptional orbit, or the complement of the equicontinuity set or of the normality set, and show that $\psi^{-1}(J(f))$ has the same property for F.
2. The quadratic rational map f in this question has fixed points at 0 and ∞, with multiplier equal to $-a$ at each, and its Julia set is the unit circle. If we set $c=-a / 2-a^{2} / 4$, so that $q_{c}: z \rightarrow z^{2}+c$ has multiplier at its attracting fixed point equal to $-a$, the map f can be regarded as a 'mating of q_{c} with q_{c} ' in the sense of the final paragraph of the final section of the lecture notes.
