LTCC

Holomorphic Dynamics and Hyperbolic Geometry (Feb-March 2013)

Week 4 Exercises - SOLUTION TO QUESTION 1

These exercises are more open-ended. An answer to any one of questions 2,3 or 4 is an acceptable alternative to the set of assessment exercises (an answer to question 1 is too easy to find in a textbook).

1. Prove that the area of a hyperbolic triangle with angles α, β, γ is $\pi-(\alpha+\beta+\gamma)$. Deduce a formula for the area of a hyperbolic polygon with a finite number of sides.
[HINT: In the half-plane model the area of a triangle A is $\iint_{A} \frac{d x d y}{y^{2}}$. Start by calculating the area of a triangle which has an ideal vertex, in which case you can assume that this vertex is at ∞. If it makes the calculation easier assume the triangle has angle $\pi / 2$ at one vertex. A general triangle can be expressed as the difference of two triangles which have an ideal vertex.]

SOLUTION

Case 1: T a triangle with angles $0, \pi / 2, \alpha$.
By applying a suitable Möbius transformation we may assume T to be the following triangle in the upper half-plane:

$$
T=\left\{z \in \mathcal{H}_{+}^{2}: 0 \leq \operatorname{Re}(z) \leq \cos (\alpha),|z| \geq 1\right\}
$$

So

$$
\operatorname{Area}(T)=\iint_{T} \frac{d x \cdot d y}{y^{2}}=\int_{0}^{\cos (\alpha)}\left(\int_{\sqrt{1-x^{2}}}^{\infty} \frac{d y}{y^{2}}\right) d x=\int_{0}^{\cos (\alpha)}\left[\frac{-1}{y}\right]_{\sqrt{1-x^{2}}}^{\infty} d x=\int_{0}^{\cos (\alpha)} \frac{1}{\sqrt{1-x^{2}}} d x
$$

which, by substituting $x=\cos \theta, d x=-\sin \theta d \theta$, gives

$$
\operatorname{Area}(T)=\int_{\pi / 2}^{\alpha}(-1) \cdot d \theta=\pi / 2-\alpha
$$

Case 2: T with angles $0, \alpha, \beta$. Drop a perpendicular from the ideal vertex to the opposite side, apply Case 1 to the two resulting triangles, and add, to get $\operatorname{Area}(T)=\pi-(\alpha+\beta)$.

Case 3: Given a triangle with non-zero angles α, β, γ at vertices A, B, C, arrange it in the upper halfplane with the side AB running along the imaginary axis. Then draw a line from C to $i \infty$ parallel to the imaginary axis. Let D denote the point $i \infty$. Now the triangle $A B C$ is the difference between the triangles $C A D$ and $C B D$, each of which has an ideal vertex, so we know their areas by Case 2 , and the formula $\pi-(\alpha+\beta+\gamma)$ follows.

Given a polygon with n sides, we can subdivide it into n triangles T_{j} by adding a new interior vertex v_{o}. Suppose T_{j} has angle α_{j} at v_{0} and angles β_{j}, γ_{j} at the other two vertices. Then the area of the polygon is:

$$
\begin{aligned}
\sum_{j=1}^{n} \pi-\left(\alpha_{j}+\beta_{j}+\gamma_{j}\right)=n & -2 \pi-\sum_{j=1}^{n}\left(\beta_{j}+\gamma_{j}\right)=(n-2) \pi-(\text { sum of interior angles }) \\
& =(\text { sum of exterior angles })-2 \pi
\end{aligned}
$$

SB 18/3/13

