Holomorphic Dynamics and Hyperbolic Geometry (February-March 2013)
 Week 3 Exercises - SOLUTIONS

1. Recall that the quaternions are quadruples $\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{4}$ written in the form $x_{0}+x_{1} i+x_{2} j+x_{3} k$ and equipped with the (non-commutive) product given by $i^{2}=j^{2}=k^{2}=-1$, $i j=-j i=k, j k=-k j=$ $i, k i=-i k=j$. An extension of the action of $\operatorname{PSL}(2, \mathbb{C})$ from $\widehat{\mathbb{C}}$ to \mathcal{H}_{+}^{3} can be defined explicitly as follows. Regard \mathbb{R}^{3} as quaternions of the form $x+y i+t j(+0 k)$. Then, provided our matrix in $P S L(2, \mathbb{C})$ has been normalised to a form in which $a d-b c \in \mathbb{R}^{>0}$, the map

$$
z+t j \rightarrow \frac{a(z+t j)+b}{c(z+t j)+d}
$$

sends the half-space

$$
\mathcal{H}_{+}^{3}=\left\{z+t j: z \in \hat{\mathbb{C}}, t \in \mathbb{R}^{>0}\right\}
$$

to itself, extending the bijection

$$
z \rightarrow \frac{a z+b}{c z+d}
$$

on the boundary plane $\hat{\mathbb{C}}$.
Verify that the expression above agrees with the formulae (i),(ii) and (iii) for the action of $\operatorname{PSL}(2, \mathbb{C})$ on \mathcal{H}_{+}^{3} (at the start of Section 5).

HINT: To express

$$
\frac{a(z+t j)+b}{c(z+t j)+d}
$$

in the standard quaternion form $e+f i+g j+h k$ with $e, f, g, h \in \mathbb{R}$ one should multiply both top and bottom by $\bar{c}(\bar{z}+\bar{d})-c t j$.

SOLUTION:

We interpret a quotient of quaternions q_{1} / q_{2} as $q_{1} q_{2}^{-1}$ (order of multiplication matters!).
(i) $z \rightarrow z+\lambda(\lambda \in \mathbb{C})$ has matrix

$$
A=\left(\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right)
$$

so the formula in the question gives the action on quaternions as:

$$
z+t j \rightarrow z+t j+\lambda=(z+\lambda)+t j
$$

i.e. the j -component is preserved and z is translated by λ, as required.
(ii) $z \rightarrow \lambda z(\lambda \in \mathbb{C})$ has matrix

$$
A=\left(\begin{array}{cc}
\lambda^{1 / 2} & 0 \\
0 & \lambda^{-1 / 2}
\end{array}\right)
$$

Choosing a square root μ of λ, the diagonal entries of A become μ and $\bar{\mu} /|\lambda|$, and the formula for $z \rightarrow \lambda z$ becomes

$$
z+t j \rightarrow|\lambda| \frac{\mu(z+t j)}{\bar{\mu}}=\mu(z+t j) \mu=\lambda z+t \mu j \mu=\lambda z+t|\mu|^{2} j=\lambda z+t|\lambda| j
$$

as required. (Here we have used the fact that if we write the complex number μ as $\nu+i \rho$ with ν, ρ real, then $\mu j \mu=(\nu+i \rho) j(\nu+i \rho)=\nu^{2} j+\rho \nu i j+\rho \nu j i+\rho^{2} i j i=\left(\nu^{2}+\rho^{2}\right) j=|\mu|^{2} j$. $)$
(iii)

$$
-\frac{1}{z+t j}=-\frac{1}{z+t j} \frac{(\bar{z}-t j)}{(\bar{z}-t j)}=\frac{-\bar{z}+t j}{z \bar{z}+t^{2}}
$$

as required.
2. Prove that a Möbius transformation of the form

$$
A=\left(\begin{array}{cc}
a & b \\
b & d
\end{array}\right) \quad a d-b^{2}=1
$$

satisfies $J A J=A^{-1}$ where $J(z)=-z^{-1}$. Deduce that if a discrete group G is generated by elements of this form then $\Lambda(G)$ is invariant under J.

SOLUTION

$$
J(A J(z))=J\left(\frac{-a / z+b}{-b / z+d}\right)=\frac{b / z-d}{-a / z+b}=\frac{d z-b}{-b z+a}=A^{-1}(z)
$$

If $z \in \Lambda(G)$ then for any point $z^{\prime} \in \hat{\mathbb{C}}$ there is a sequence of $g_{n} \in G$ with $g_{n}\left(z^{\prime}\right)$ converging to z. But then, noting that $J^{-1}=J$, and conjugating by J (in other words 'applying J as a change of coordinate'), we deduce that the points $\left(J g_{n} J\right)\left(J\left(z^{\prime}\right)\right.$ converge to $J(z)$. But $J\left(g_{n}\right) J \in G$, as $J\left(g_{n}\right) J=g_{n}^{-1}$, so this means that $J(z)$ is an accumulation point of a G orbit. Hence $J(z) \in \Lambda(G)$.
3. Let $h(z)=(a z+b) /(c z+d)$ where $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$.
(i) Show that $\operatorname{Im}(h(z))=\operatorname{Im}(z) /|c z+d|^{2}$.
(ii) Let $\Delta=\{z: \operatorname{Im}(z)>0,|\operatorname{Re}(z)|<1 / 2,|z|>1\}$. If $z \in \Delta$ show that $|c z+d|^{2}>(|c|-|d|)^{2}+|c d|$ and deduce from (i) that if $a, b, c, d \in \mathbb{Z}$ and $h \neq I$ then $\operatorname{Im}(h(z))<\operatorname{Im}(z)$.
(iii) By applying (ii) to h and to h^{-1} deduce that if $z \in \Delta$ then there is no $I \neq h \in \operatorname{PSL}(2, \mathbb{Z})$ such that $h(z) \in \Delta$.
(iv) Let $v \in \mathbb{R}, v>1$. Deduce from (iii) that $\Delta=\left\{z \in \mathcal{H}_{+}^{2}: d(z, i v)<d(z, g(i v)) \forall I \neq g \in P S L(2, \mathbb{Z})\right\}$ (where d is the Poincaré metric).

SOLUTION

$$
\begin{equation*}
h(z)=\frac{a z+b}{c z+d}=\frac{a z+b}{c z+d} \cdot \frac{c \bar{z}+d}{c \bar{z}+d} \tag{i}
\end{equation*}
$$

so

$$
\operatorname{Im}(h(z))=\frac{(a d-b c) \operatorname{Im}(z)}{|c z+d|^{2}}
$$

$$
\begin{align*}
|c z+d|^{2} & =(c z+d)(c \bar{z}+d)=|c|^{2} \bar{z}^{2}+|d|^{2}+2 c d \cdot \operatorname{Re}(z) \tag{ii}\\
& >|c|^{2}+|d|^{2}-|c d|=(|c|-|d|)^{2}+|c d|
\end{align*}
$$

since $|z|>1$ and $\operatorname{Re}(z)>-1 / 2$.
Finally $(|c|-|d|)^{2}+|c d| \geq 1$ by considering all the possibilities for $c, d \in \mathbb{Z}$ having at least one of c, d non-zero, so $\operatorname{Im}(h(z))<\operatorname{Im}(z)$ by (i).
(iii) If both z and $h(z)=z^{\prime}$ lie in Δ then by (ii) applied to z we have $\operatorname{Im}\left(z^{\prime}\right)<\operatorname{Im}(z)$, and by (ii) applied to z^{\prime} we have $\operatorname{Im}(z)<\operatorname{Im}\left(z^{\prime}\right)$ (since $z=h^{-1}\left(z^{\prime}\right)$).
(iv) But from the way it is defined, Δ is the set $\left\{z \in \mathcal{H}_{+}^{2}: d(z, i v)<d(z, T(i v)), d(z, i v)<d(z, S(i v))\right\}$ (where $T(z)=z+1$ and $S(z)=-1 / z)$, so Δ contains the Dirichlet domain for $P S L(2, \mathbb{Z})$ defined with respect to the point $i v$. So either Δ is the Dirichlet domain and its images tile the upper half-plane or Δ properly contains the Dirichlet domain, in which case there is a $g(\Delta)$ which overlaps Δ. But from (ii) we know that $g(\Delta) \cap \Delta=\emptyset$ for all non-identity elements of $\operatorname{PSL}(2, \mathbb{Z})$. So Δ is the relevant Dirichlet domain for $\operatorname{PSL}(2, \mathbb{Z})$.
Comment: It now follows from Poincaré's Polygon Theorem that $\operatorname{PSL}(2, \mathbb{Z})$ is generated by S and T subject only to the relations $S^{2}=I$ and $(S T)^{3}=I$.

