$\underline{\underline{L T C C}}$

Holomorphic Dynamics and Hyperbolic Geometry

Solutions 2

1. If f is a rational function with a fixed point at ∞ show that the multiplier λ at ∞ is equal to $\lim _{z \rightarrow \infty} 1 / f^{\prime}(z)$. Deduce that the fixed point at ∞ is a superattractor if and only if $\lim _{z \rightarrow \infty} f^{\prime}(z)=\infty$. (Hint: consider the power series expansion around $\zeta=0$ of $\sigma f \sigma$, where $\sigma(\zeta)=1 / \zeta)$.

Solution. Let $g=\sigma f \sigma$ where $\sigma(z)=1 / z$. Then the multiplier of f at its fixed point ∞ is equal to the multiplier of g at its fixed point 0 . But 0 is a superattractive fixed point of g if and only if the Taylor series for g around $z=0$ has the form:

$$
g(z)=a_{k} z^{k}+a_{k+1} z^{k+1}+a_{k+2} z^{k+2}+\ldots
$$

for some $k \geq 2$ (with $a_{k} \neq 0$). So for large $z, f(z)$ has the form:

$$
\begin{aligned}
f(z)= & \left(a_{k} z^{-k}+a_{k+1} z^{-(k+1)}+a_{k+2} z^{-(k+2)}+\ldots\right)^{-1} \\
= & z^{k}\left(a_{k}+a_{k+1} z^{-1}+a_{k+2} z^{-2}+\ldots\right)^{-1} \\
& =a_{k}^{-1} z^{k}(1+\ldots)^{-1}=a_{k}^{-1} z^{k}(1+\ldots)
\end{aligned}
$$

where '...' is a power series in z^{-1}, so tends to zero as z tends to ∞. So $\lim _{z \rightarrow \infty} f^{\prime}(z)=\lim _{z \rightarrow \infty} k a_{k}^{-1} z^{k-1}$ and as $k \geq 2$ we have $\lim _{z \rightarrow \infty} f^{\prime}(z)=\infty$.
2. Picard's Theorem states that if a holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ (i.e. an entire function) has the property that there are at least two points of \mathbb{C} that are not in the image of f, then f is constant. Deduce Picard's Theorem from Liouville's Theorem and the fact that \mathbb{D} is the universal cover of the thricepunctured Riemann sphere $\hat{\mathbb{C}}$. Write down a non-constant entire function the image of which omits just one point of \mathbb{C}.
Solution. Suppose $f: \mathbb{C} \rightarrow(\hat{\mathbb{C}}-\{0,1, \infty\})$ is holomorphic. Then since \mathbb{C} is simply-connected, f lifts to a holomorphic function $\tilde{f}: \mathbb{C} \rightarrow \mathcal{H}_{+}$. Now if we let α be a Möbius transformation sending the half-plane \mathcal{H}_{+}bijectively to the unit disc \mathbb{D}, the composite $\alpha \circ \tilde{f}$ is a bounded entire function, therefore constant (by Liouville's Theorem). Hence \tilde{f} is constant. Hence f is constant.
3. Let f be a rational map. Using the 'normal families' definition of the Fatou set, prove that the Fatou set of f^{2} (i.e. f composed with f) is the same set as the Fatou set $F(f)$ of F. Now consider $f(z)=z^{2}-1$. Show that $0,-1$ and ∞ are attracting fixed points of f^{2} (i.e. f composed with f) and deduce that they are in different components of the Fatou set $F(f)$ of f. Deduce that $F(f)$ contains infinitely many components. Let F_{0} denote the component containing 0 . Sketch the position of the components of $f^{-n}\left(F_{0}\right)$ for $n=1,2,3$, indicating how they map to each other under f.
Solution. $z \in F\left(f^{2}\right) \Rightarrow$ every infinite sequence in $\left\{f^{2 n}\right\}_{n>0}$ has a subsequence which converges locally uniformly at z to a function g. Now any infinite sequence in $\left\{f^{n}\right\}_{n>0}$ either has a subsequence consisting of even powers, in which case there is a subsequence converging locally uniformly to g, or it has a subsequence consisting of odd powers, in which case there is a subsequence converging locally uniformly at z to $f \circ g$. Hence $f \in F(f)$.
Conversely, $f \in F(f) \Rightarrow$ the infinite family $\left\{f^{2 n}\right\}_{n>0}$ has a subsequence which converges locally uniformly at z to a function g, and hence every infinite subfamily of $\left\{f^{2 n}\right\}_{n>0}$ has a subsequence which converges locally uniformly at z to g, in other words $z \in F\left(f^{2}\right)$.
For $f(z)=z^{2}-1$ we have $f(f(z))=\left(z^{2}-1\right)^{2}-1=z^{4}-2 z^{2}$. Writing $g(z)$ for $f(f(z))$, we have $g(0)=0, g(-1)=-1, g^{\prime}(0)=0$ and $g^{\prime}(-1)=0$, so 0 and 1 are superattracting fixed points. Also ∞ is a superattracting fixed point since this is true for every polynomial of degree ≥ 2 (e.g. by the criterion in question 1). Every point in the component of an attacting fixed point has forward orbit converging to that fixed point, so $0,-1$ and ∞ are in different components. (I'll draw a sketch in Week 4 to illustrate how the various components map to one another in this example.)
4. A non-identity element $\alpha \in P S L(2, \mathbb{R})$ is said to be:
elliptic if it has just one fixed point in the open upper half plane;
hyperbolic if it has two distinct fixed points on the extended real line $\hat{\mathbb{R}}=$ $\mathbb{R} \cup\{\infty\} ;$
parabolic if it has just one fixed point in $\hat{\mathbb{C}}$ (necessarily on $\hat{\mathbb{R}}$).
(i) Regarding α as a 2×2 real matrix of determinant 1 , show that α is elliptic, hyperbolic, parabolic $\Leftrightarrow|\operatorname{tr}(\alpha)|<2,>2,=2$ respectively (where the trace of a matrix is the sum of the entries on the main diagonal).
(ii) Show that if α is hyperbolic then it is conjugate in $\operatorname{PSL}(2, \mathbb{R})$ to $z \rightarrow \lambda z$ for some non-zero $\lambda \in \mathbb{R}$, and in fact that we may require λ to be >0.
(iii) Show that if α is parabolic then it is conjugate in $\operatorname{PSL}(2, \mathbb{R})$ to $z \rightarrow z+1$ or to $z \rightarrow z-1$.
(iv) Show that in the Poincaré disc model of the hyperbolic plane the elliptic isometries fixing the origin are the Euclidean rotations.

Solution.

(i) The fixed points of $\alpha(z)=z$ in $\hat{\mathbb{C}}$ are the solutions of $z(c z+d)=a z+b$, i.e.

$$
c z^{2}+(d-a) z-b=0
$$

(where if $c=0$ then one of the fixed points is ∞, and if $c=0$ and $d=a$ then ∞ is the only fixed point).
When $c \neq 0$ we get (since a, b, c, d are real and $a d-b c=1$):

- one solution, necessarily real, if $(d-a)^{2}+4 b c=0$ i.e. if $(d+a)^{2}=4$;
- two distinct real solutions if $(d-a)^{2}+4 b c>0$ i.e. if $(d+a)^{2}>4$;
- one solution in the upper half plane and another (the complex conjugate) in the lower half plane if $(d-a)^{2}+4 b c<0$ i.e. if $(d+a)^{2}<4$.
(ii) If α is hyperbolic we can move the fixed points to 0 and ∞ by a (real) Möbius conjugacy. Now α has the form $z \rightarrow \lambda z$ for some real λ, and as α maps the uper half-plane to itself we have $\lambda>0$.
(In fact we may choose $\lambda>1$, which is what I intended to ask, for if $\lambda<1$ then by exchanging 0 and ∞ we can conjugate α to $z \rightarrow \lambda^{-1} z$.)
(iii) If α is parabolic then by a Möbius conjugacy we can assume the unique fixed point is at ∞. Then α has the form $z \rightarrow z+\lambda$ for some $0 \neq \lambda \in \mathbb{R}$. Now if we conjugate such an α by $z \rightarrow \mu z$ it becomes $z \rightarrow \mu\left(\mu^{-1} z+\lambda\right)$. So by taking $\mu=1 /|\lambda|$ we can conjugate α either $z \rightarrow z+1$ or to $z \rightarrow z-1$.
(iv) In the Poincaré disc model the isometries have the form

$$
z \rightarrow e^{i \theta} \frac{z-a}{1-\bar{a} z} \text { with } a \in \mathbb{D} .
$$

Any isometry fixing 0 has $a=0$ and so is of the form $z \rightarrow e^{i \theta} z$.
5. On the hyperbolic plane a reflection is an orientation-reversing isometry β which fixes some geodesic pointwise.
(i) Show that every reflection β is an involution (i.e. $\beta^{2}=I$);
(ii) Show that for every reflection β there is an element of $\operatorname{PSL}(2, \mathbb{R})$ which conjugates β to 'reflection in the imaginary axis', i.e. the map $z \rightarrow-\bar{z}$.
(iii) Show that every orientation-preserving isometry of the hyperbolic plane can be written as the composition of a pair of reflections (by the previous question it will suffice to consider $z \rightarrow \lambda z$ and $z \rightarrow z \pm 1$ on \mathcal{H}_{+}, and $z \rightarrow e^{i \theta} z$ on $\left.\mathbb{D}\right)$. Deduce that every orientation-reversing isometry can be written as a composition of at most three reflections.
(iv) Show that the orientation-reversing isometries of the hyperbolic plane are precisely the maps

$$
z \rightarrow \frac{a \bar{z}+b}{c \bar{z}+d} \quad a, b, c, d \in \mathbb{R}, a d-b c=-1
$$

(Hint: if an isometry reverses orientation then composing it with a reflection will preserve orientation.)

Solution.

(i) If β fixes the geodesic γ pointwise, then for every $p \in \gamma$ the geodesic γ^{\prime} through p orthogonal to γ is sent to itself. Hence β^{2} is an orientation-preserving isometry of γ^{\prime}. So β^{2} is the identity on the end points of γ^{\prime} as well as on the end-points of γ. Hence $\beta^{2}=I$ (as a Möbius transformation with ≥ 3 fixed points is the identity).
(ii) Conjugate the fixed geodesic of β to the imaginary axis in the upper half plane. Now by the argument in the solution to (i) above β sends each semicircle orthogonal to this axis to itself, fixing the intersection point of the semicircle with the imaginary axis and preserving (hyperbolic) distances. So β is the Euclidean reflection in this axis $(z \rightarrow-\bar{z})$.
(iii) $z \rightarrow z+1$ is reflection in the imaginary axis followed by reflection in the vertical line $\operatorname{Re}(z)=1 / 2 . \quad z \rightarrow z-1$ is the same pair of reflections in the opposite order.
$z \rightarrow \lambda z$ is reflection in the semicircle through i orthogonal to the imaginary axis, followed by reflection in the semicircle through $i \sqrt{\lambda}$ orthogonal to the imaginary axis.
Rotation through θ about the origin, in the disc model, is composition of reflections in lines through the origin at angle $\theta / 2$ to one another.
if α is an orientation-reversing isometry, then $\beta \alpha$ preserves orientation, where $\beta(z)=-\bar{z}$, so by the argument above $\beta \alpha=R_{2} R_{1}$ (a product of two reflections. Hence $\alpha=\beta R_{2} R_{1}\left(\right.$ since $\left.\beta^{2}=I\right)$.
(iv) If α reverses orientation then $\alpha \beta$ preserves orientation, where $\beta(z)=-\bar{z}$. Hence

$$
\alpha \beta(z)=\frac{a z+b}{c z+d} \text { with } a, b, c, d \in \mathbb{R}, a b-c d=1
$$

So

$$
\begin{gathered}
\alpha(z)=\frac{a(-\bar{z})+b}{c(-\bar{z})+d} \text { with } a, b, c, d \in \mathbb{R}, a b-c d=1 \\
=\frac{(-a) \bar{z}+b}{(-c) \bar{z}+d} \text { with }-a, b,-c, d \in \mathbb{R},(-a) b-(-c) d=-1 .
\end{gathered}
$$

