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Holomorphic Dynamics and Hyperbolic Geometry

Solutions 2

1. If f is a rational function with a fixed point at co show that the multiplier
A at oo is equal to lim, ,. 1/f'(2). Deduce that the fixed point at co is a
superattractor if and only if lim, o, f'(2) = oco. (Hint: consider the power
series expansion around ¢ = 0 of o fo, where o(¢) = 1/().

Solution. Let g = ofc where o(z) = 1/z. Then the multiplier of f at its
fixed point oo is equal to the multiplier of g at its fixed point 0. But 0 is a
superattractive fixed point of g if and only if the Taylor series for g around
z = 0 has the form:
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for some k > 2 (with a; # 0). So for large z, f(z) has the form:
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where ... is a power series in z7!, so tends to zero as z tends to co. So

lm, 00 f/(2) = lim, 0 ka;lzk_l and as k > 2 we have lim,_,, f'(z) = cc.

2. Picard’s Theorem states that if a holomorphic function f : C — C (i.e. an
entire function) has the property that there are at least two points of C that
are not in the image of f, then f is constant. Deduce Picard’s Theorem from
Liouville’s Theorem and the fact that D is the universal cover of the thrice-
punctured Riemann sphere C. Write down a non-constant entire function the
image of which omits just one point of C.

Solution. Suppose f: C — (@ —{0,1,00}) is holomorphic. Then since C is
simply-connected, f lifts to a holomorphic function f : C — H,. Now if we let
« be a Mobius transformation sending the half-plane H bijectively to the unit
disc D, the composite avo f is a bounded entire function, therefore constant (by
Liouville’s Theorem). Hence f is constant. Hence f is constant.



3. Let f be a rational map. Using the ‘normal families’ definition of the Fatou
set, prove that the Fatou set of f2 (i.e. f composed with f) is the same set as
the Fatou set F(f) of F. Now consider f(z) = 22 — 1. Show that 0, —1 and
oo are attracting fixed points of f2 (i.e. f composed with f) and deduce that
they are in different components of the Fatou set F'(f) of f. Deduce that F(f)
contains infinitely many components. Let F{, denote the component containing
0. Sketch the position of the components of f~"(F) for n = 1, 2,3, indicating
how they map to each other under f.

Solution. z € F(f?) = every infinite sequence in {f?"},~0 has a subsequence
which converges locally uniformly at z to a function g. Now any infinite sequence
in {f™},>0 either has a subsequence consisting of even powers, in which case
there is a subsequence converging locally uniformly to g, or it has a subsequence
consisting of odd powers, in which case there is a subsequence converging locally
uniformly at z to f o g. Hence f € F(f).

Conversely, f € F(f) = the infinite family {f?"},,~¢ has a subsequence which
converges locally uniformly at z to a function g, and hence every infinite sub-
family of {f?"},~0 has a subsequence which converges locally uniformly at z to
g, in other words z € F(f?).

For f(z) = 22 — 1 we have f(f(2)) = (22 —1)2 — 1 = 2* — 222, Writing g(z) for
f(f(2)), we have g(0) =0, g(—1) = =1, ¢’(0) = 0 and ¢'(—1) = 0, s0 0 and 1
are superattracting fixed points. Also co is a superattracting fixed point since
this is true for every polynomial of degree > 2 (e.g. by the criterion in question
1). Every point in the component of an attacting fixed point has forward orbit
converging to that fixed point, so 0, —1 and co are in different components. (I’ll
draw a sketch in Week 4 to illustrate how the various components map to one
another in this example.)

4. A non-identity element ov € PSL(2,R) is said to be:

elliptic if it has just one fixed point in the open upper half plane;

hyperbolic if it has two distinct fixed points on the extended real line R =
RU {oo};

parabolic if it has just one fixed point in ¢ (necessarily on R)

(i) Regarding « as a 2 x 2 real matrix of determinant 1, show that « is elliptic,
hyperbolic, parabolic < |tr(a)| < 2, > 2, = 2 respectively (where the trace of
a matrix is the sum of the entries on the main diagonal).

(ii) Show that if «v is hyperbolic then it is conjugate in PSL(2,R) to z — Az for
some non-zero A € R, and in fact that we may require A to be > 0.

(iii) Show that if o is parabolic then it is conjugate in PSL(2,R) to z = z + 1
ortoz—z—1.

(iv) Show that in the Poincaré disc model of the hyperbolic plane the elliptic
isometries fixing the origin are the Euclidean rotations.



Solution. .
(i) The fixed points of a(z) = z in C are the solutions of z(cz +d) = az + 1, i.e.

2+ (d—a)z—b=0

(where if ¢ = 0 then one of the fixed points is co, and if ¢ = 0 and d = a then
oo is the only fixed point).

When ¢ # 0 we get (since a, b, ¢, d are real and ad — be = 1):

e one solution, necessarily real, if (d — a)? + 4bc = 0 i.e. if (d + a)? = 4;

e two distinct real solutions if (d — a)? + 4bc > 0 i.e. if (d + a)? > 4;

e one solution in the upper half plane and another (the complex conjugate) in
the lower half plane if (d — a)? + 4bc < 0 i.e. if (d + a)? < 4.

(ii) If « is hyperbolic we can move the fixed points to 0 and oo by a (real)
Moébius conjugacy. Now « has the form z — Az for some real A, and as a maps
the uper half-plane to itself we have A > 0.

(In fact we may choose A > 1, which is what I intended to ask, for if A <1 then
by exchanging 0 and oo we can conjugate o to z — A\~ 1z.)

(iii) If « is parabolic then by a Mobius conjugacy we can assume the unique
fixed point is at co. Then « has the form z — z + A for some 0 # A € R. Now if
we conjugate such an a by z — uz it becomes z — u(u=tz + X). So by taking
= 1/|\| we can conjugate « either z — z+ 1 or to z — z — 1.

(iv) In the Poincaré disc model the isometries have the form

- Z— Q
W= " with a € D.
z

zZ—re

Any isometry fixing 0 has a = 0 and so is of the form z — €% z.

5. On the hyperbolic plane a reflection is an orientation-reversing isometry [
which fixes some geodesic pointwise.

(i) Show that every reflection 3 is an involution (i.e. B2 = I);

(ii) Show that for every reflection § there is an element of PSL(2,R) which
conjugates [ to ‘reflection in the imaginary axis’, i.e. the map z — —Z.

(iii) Show that every orientation-preserving isometry of the hyperbolic plane can
be written as the composition of a pair of reflections (by the previous question it
will suffice to consider 2 — Az and z — z+1 on H,, and z — €2 on D). Deduce
that every orientation-reversing isometry can be written as a composition of at
most three reflections.

(iv) Show that the orientation-reversing isometries of the hyperbolic plane are
precisely the maps

_)aé—i—b
cz+d

a,b,c,d € R, ad —bc=—1

(Hint: if an isometry reverses orientation then composing it with a reflection
will preserve orientation.)



Solution.

(i) If B fixes the geodesic v pointwise, then for every p € + the geodesic
through p orthogonal to v is sent to itself. Hence 32 is an orientation-preserving
isometry of 7/. So /32 is the identity on the end points of +' as well as on the
end-points of 7. Hence 8% = I (as a M&bius transformation with > 3 fixed
points is the identity).

(ii) Conjugate the fixed geodesic of 8 to the imaginary axis in the upper half
plane. Now by the argument in the solution to (i) above 8 sends each semicircle
orthogonal to this axis to itself, fixing the intersection point of the semicircle
with the imaginary axis and preserving (hyperbolic) distances. So [ is the
Euclidean reflection in this axis (z — —Z).

(iii) z — z + 1 is reflection in the imaginary axis followed by reflection in the
vertical line Re(z) = 1/2. z — z — 1 is the same pair of reflections in the
opposite order.

z — Az is reflection in the semicircle through ¢ orthogonal to the imaginary axis,
followed by reflection in the semicircle through iv/X orthogonal to the imaginary
axis.

Rotation through 6 about the origin, in the disc model, is composition of reflec-
tions in lines through the origin at angle /2 to one another.

if « is an orientation-reversing isometry, then Sa preserves orientation, where

B(z) = —Z, so by the argument above fa = Ro Ry (a product of two reflections.
Hence o = BRy Ry (since 32 = I).

(iv) If « reverses orientation then «f preserves orientation, where 8(z) = —Z.
Hence b
az
= ith R,ab—cd=1
aB(z) P with a,b,c,d € R,ab — cd
So S
a(z) = @ with a,b,¢,d € Ryab—cd =1
c(—z)+d

_(=a)z+0b .
= Coitd with —a,b,—c,d € R,(—a)b— (—c)d = —1.
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