
Holomorphic Dynamics and Hyperbolic Geometry

Solutions 2

1. If f is a rational function with a fixed point at ∞ show that the multiplier
λ at ∞ is equal to limz→∞ 1/f ′(z). Deduce that the fixed point at ∞ is a
superattractor if and only if limz→∞ f ′(z) = ∞. (Hint: consider the power
series expansion around ζ = 0 of σfσ, where σ(ζ) = 1/ζ).

Solution. Let g = σfσ where σ(z) = 1/z. Then the multiplier of f at its
fixed point ∞ is equal to the multiplier of g at its fixed point 0. But 0 is a
superattractive fixed point of g if and only if the Taylor series for g around
z = 0 has the form:

g(z) = akz
k + ak+1z

k+1 + ak+2z
k+2 + . . .

for some k ≥ 2 (with ak 6= 0). So for large z, f(z) has the form:

f(z) = (akz
−k + ak+1z

−(k+1) + ak+2z
−(k+2) + . . .)−1

= zk(ak + ak+1z
−1 + ak+2z

−2 + . . .)−1

= a−1k zk(1 + . . .)−1 = a−1k zk(1 + . . .)

where ‘. . .’ is a power series in z−1, so tends to zero as z tends to ∞. So
limz→∞ f ′(z) = limz→∞ ka−1k zk−1 and as k ≥ 2 we have limz→∞ f ′(z) =∞.

2. Picard’s Theorem states that if a holomorphic function f : C → C (i.e. an
entire function) has the property that there are at least two points of C that
are not in the image of f , then f is constant. Deduce Picard’s Theorem from
Liouville’s Theorem and the fact that D is the universal cover of the thrice-
punctured Riemann sphere Ĉ. Write down a non-constant entire function the
image of which omits just one point of C.

Solution. Suppose f : C → (Ĉ − {0, 1,∞}) is holomorphic. Then since C is
simply-connected, f lifts to a holomorphic function f̃ : C→ H+. Now if we let
α be a Möbius transformation sending the half-plane H+ bijectively to the unit
disc D, the composite α ◦ f̃ is a bounded entire function, therefore constant (by
Liouville’s Theorem). Hence f̃ is constant. Hence f is constant.



3. Let f be a rational map. Using the ‘normal families’ definition of the Fatou
set, prove that the Fatou set of f2 (i.e. f composed with f) is the same set as
the Fatou set F (f) of F . Now consider f(z) = z2 − 1. Show that 0,−1 and
∞ are attracting fixed points of f2 (i.e. f composed with f) and deduce that
they are in different components of the Fatou set F (f) of f . Deduce that F (f)
contains infinitely many components. Let F0 denote the component containing
0. Sketch the position of the components of f−n(F0) for n = 1, 2, 3, indicating
how they map to each other under f .

Solution. z ∈ F (f2) ⇒ every infinite sequence in {f2n}n>0 has a subsequence
which converges locally uniformly at z to a function g. Now any infinite sequence
in {fn}n>0 either has a subsequence consisting of even powers, in which case
there is a subsequence converging locally uniformly to g, or it has a subsequence
consisting of odd powers, in which case there is a subsequence converging locally
uniformly at z to f ◦ g. Hence f ∈ F (f).
Conversely, f ∈ F (f) ⇒ the infinite family {f2n}n>0 has a subsequence which
converges locally uniformly at z to a function g, and hence every infinite sub-
family of {f2n}n>0 has a subsequence which converges locally uniformly at z to
g, in other words z ∈ F (f2).

For f(z) = z2 − 1 we have f(f(z)) = (z2 − 1)2 − 1 = z4 − 2z2. Writing g(z) for
f(f(z)), we have g(0) = 0, g(−1) = −1, g′(0) = 0 and g′(−1) = 0, so 0 and 1
are superattracting fixed points. Also ∞ is a superattracting fixed point since
this is true for every polynomial of degree ≥ 2 (e.g. by the criterion in question
1). Every point in the component of an attacting fixed point has forward orbit
converging to that fixed point, so 0, −1 and∞ are in different components. (I’ll
draw a sketch in Week 4 to illustrate how the various components map to one
another in this example.)

4. A non-identity element α ∈ PSL(2,R) is said to be:
elliptic if it has just one fixed point in the open upper half plane;
hyperbolic if it has two distinct fixed points on the extended real line R̂ =
R ∪ {∞};
parabolic if it has just one fixed point in Ĉ (necessarily on R̂).
(i) Regarding α as a 2× 2 real matrix of determinant 1, show that α is elliptic,
hyperbolic, parabolic ⇔ |tr(α)| < 2, > 2, = 2 respectively (where the trace of
a matrix is the sum of the entries on the main diagonal).
(ii) Show that if α is hyperbolic then it is conjugate in PSL(2,R) to z → λz for
some non-zero λ ∈ R, and in fact that we may require λ to be > 0.
(iii) Show that if α is parabolic then it is conjugate in PSL(2,R) to z → z + 1
or to z → z − 1.
(iv) Show that in the Poincaré disc model of the hyperbolic plane the elliptic
isometries fixing the origin are the Euclidean rotations.



Solution.
(i) The fixed points of α(z) = z in Ĉ are the solutions of z(cz+ d) = az+ b, i.e.

cz2 + (d− a)z − b = 0

(where if c = 0 then one of the fixed points is ∞, and if c = 0 and d = a then
∞ is the only fixed point).
When c 6= 0 we get (since a, b, c, d are real and ad− bc = 1):
• one solution, necessarily real, if (d− a)2 + 4bc = 0 i.e. if (d+ a)2 = 4;
• two distinct real solutions if (d− a)2 + 4bc > 0 i.e. if (d+ a)2 > 4;
• one solution in the upper half plane and another (the complex conjugate) in
the lower half plane if (d− a)2 + 4bc < 0 i.e. if (d+ a)2 < 4.

(ii) If α is hyperbolic we can move the fixed points to 0 and ∞ by a (real)
Möbius conjugacy. Now α has the form z → λz for some real λ, and as α maps
the uper half-plane to itself we have λ > 0.
(In fact we may choose λ > 1, which is what I intended to ask, for if λ < 1 then
by exchanging 0 and ∞ we can conjugate α to z → λ−1z.)

(iii) If α is parabolic then by a Möbius conjugacy we can assume the unique
fixed point is at∞. Then α has the form z → z+λ for some 0 6= λ ∈ R. Now if
we conjugate such an α by z → µz it becomes z → µ(µ−1z + λ). So by taking
µ = 1/|λ| we can conjugate α either z → z + 1 or to z → z − 1.

(iv) In the Poincaré disc model the isometries have the form

z → eiθ
z − a
1− āz

with a ∈ D.

Any isometry fixing 0 has a = 0 and so is of the form z → eiθz.

5. On the hyperbolic plane a reflection is an orientation-reversing isometry β
which fixes some geodesic pointwise.
(i) Show that every reflection β is an involution (i.e. β2 = I);
(ii) Show that for every reflection β there is an element of PSL(2,R) which
conjugates β to ‘reflection in the imaginary axis’, i.e. the map z → −z̄.
(iii) Show that every orientation-preserving isometry of the hyperbolic plane can
be written as the composition of a pair of reflections (by the previous question it
will suffice to consider z → λz and z → z±1 onH+, and z → eiθz on D). Deduce
that every orientation-reversing isometry can be written as a composition of at
most three reflections.
(iv) Show that the orientation-reversing isometries of the hyperbolic plane are
precisely the maps

z → az̄ + b

cz̄ + d
a, b, c, d ∈ R, ad− bc = −1

(Hint: if an isometry reverses orientation then composing it with a reflection
will preserve orientation.)



Solution.
(i) If β fixes the geodesic γ pointwise, then for every p ∈ γ the geodesic γ′

through p orthogonal to γ is sent to itself. Hence β2 is an orientation-preserving
isometry of γ′. So β2 is the identity on the end points of γ′ as well as on the
end-points of γ. Hence β2 = I (as a Möbius transformation with ≥ 3 fixed
points is the identity).

(ii) Conjugate the fixed geodesic of β to the imaginary axis in the upper half
plane. Now by the argument in the solution to (i) above β sends each semicircle
orthogonal to this axis to itself, fixing the intersection point of the semicircle
with the imaginary axis and preserving (hyperbolic) distances. So β is the
Euclidean reflection in this axis (z → −z̄).

(iii) z → z + 1 is reflection in the imaginary axis followed by reflection in the
vertical line Re(z) = 1/2. z → z − 1 is the same pair of reflections in the
opposite order.

z → λz is reflection in the semicircle through i orthogonal to the imaginary axis,
followed by reflection in the semicircle through i

√
λ orthogonal to the imaginary

axis.

Rotation through θ about the origin, in the disc model, is composition of reflec-
tions in lines through the origin at angle θ/2 to one another.

if α is an orientation-reversing isometry, then βα preserves orientation, where
β(z) = −z̄, so by the argument above βα = R2R1 (a product of two reflections.
Hence α = βR2R1 (since β2 = I).

(iv) If α reverses orientation then αβ preserves orientation, where β(z) = −z̄.
Hence

αβ(z) =
az + b

cz + d
with a, b, c, d ∈ R, ab− cd = 1

So

α(z) =
a(−z̄) + b

c(−z̄) + d
with a, b, c, d ∈ R, ab− cd = 1

=
(−a)z̄ + b

(−c)z̄ + d
with − a, b,−c, d ∈ R, (−a)b− (−c)d = −1.
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