LTCC

Holomorphic Dynamics and Hyperbolic Geometry (February-March 2013)

Week 3 Exercises

1. Recall that the quaternions are quadruples $\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{4}$ written in the form $x_{0}+x_{1} i+x_{2} j+x_{3} k$ and equipped with the (non-commutive) product given by $i^{2}=j^{2}=k^{2}=-1$, $i j=-j i=k, j k=-k j=$ $i, k i=-i k=j$. An extension of the action of $\operatorname{PSL}(2, \mathbb{C})$ from $\widehat{\mathbb{C}}$ to \mathcal{H}_{+}^{3} can be defined explicitly as follows. Regard \mathbb{R}^{3} as quaternions of the form $x+y i+t j(+0 k)$. Then, provided our matrix in $P S L(2, \mathbb{C})$ has been normalised to a form in which $a d-b c \in \mathbb{R}^{>0}$, the map

$$
z+t j \rightarrow \frac{a(z+t j)+b}{c(z+t j)+d}
$$

sends the half-space

$$
\mathcal{H}_{+}^{3}=\left\{z+t j: z \in \hat{\mathbb{C}}, t \in \mathbb{R}^{>0}\right\}
$$

to itself, extending the bijection

$$
z \rightarrow \frac{a z+b}{c z+d}
$$

on the boundary plane $\hat{\mathbb{C}}$.
Verify that the expression above agrees with the formulae (i),(ii) and (iii) for the action of $P S L(2, \mathbb{C})$ on \mathcal{H}_{+}^{3} (at the start of Section 5).
HINT: To express

$$
\frac{a(z+t j)+b}{c(z+t j)+d}
$$

in the standard quaternion form $e+f i+g j+h k$ with $e, f, g, h \in \mathbb{R}$ one should multiply both top and bottom by $\bar{c}(\bar{z}+\bar{d})-c t j$.
2. Prove that a Möbius transformation of the form

$$
A=\left(\begin{array}{cc}
a & b \\
b & d
\end{array}\right) \quad a d-b^{2}=1
$$

satisfies $J A J=A^{-1}$ where $J(z)=-z^{-1}$. Deduce that if a discrete group G is generated by elements of this form then $\Lambda(G)$ is invariant under J.
3. Let $h(z)=(a z+b) /(c z+d)$ where $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$.
(i) Show that $\operatorname{Im}(h(z))=\operatorname{Im}(z) /|c z+d|^{2}$.
(ii) Let $\Delta=\{z: \operatorname{Im}(z)>0,|\operatorname{Re}(z)|<1 / 2,|z|>1\}$. If $z \in \Delta$ show that $|c z+d|^{2}>(|c|-|d|)^{2}+|c d|$ and deduce from (i) that if $a, b, c, d \in \mathbb{Z}$ then $\operatorname{Im}(h(z))<\operatorname{Im}(z)$.
(iii) By applying (ii) to h and to h^{-1} deduce that if $z \in \Delta$ then there is no $I \neq h \in P S L(2, \mathbb{Z})$ such that $h(z) \in \Delta$.
(iv) Let $v \in \mathbb{R}, v>1$. Deduce from (iii) that $\Delta=\left\{z \in \mathcal{H}_{+}^{2}: d(z, i v)<d(z, g(i v)) \forall I \neq g \in P S L(2, \mathbb{Z})\right\}$ (where d is the Poincaré metric).

