LTCC

Holomorphic Dynamics and Hyperbolic Geometry (February-March 2013)

Week 1 Exercises

1. For the angle-doubling map $t \to 2t \mod 1$ on the circle \mathbb{R}/\mathbb{Z} prove that the periodic points are the points $t \in [0,1)$ of the form $t = m/(2^n - 1)$ (where $0 \le m < 2^n - 1$ with $m, n \in \mathbb{N}$).

2. Show that $h : z \to z + 1/z$ is a semiconjugacy from $f : z \to z^2$ to $g : z \to z^2 - 2$ (that is, h is a surjection satisfying hf = gh) and that h sends the Julia set of f (the unit circle) onto the real interval [-2, +2].

3. Find a Möbius transformation which sends the upper half plane \mathcal{H}_+ bijectively onto the unit disc \mathbb{D} . Assuming the structure of $Aut(\mathbb{D})$ (Prop 2.9) prove that $Aut(\mathcal{H}_+) = PSL(2, \mathbb{R})$ (Cor 2.10).

4. Let $w = e^{i\theta}(z-a)/(1-\bar{a}z)$ with $\theta \in \mathbb{R}$ and a in the open unit disc \mathbb{D} . Show that $\left|\frac{dw}{dz}\right| = \frac{1-|w|^2}{1-|z|^2}$ and hence $\frac{2|dz|}{1-|z|^2} = \frac{2|dw|}{1-|w|^2}$. Deduce that the infinitesimal metric $d\rho = \frac{2|dz|}{1-|z|^2}$ is invariant under $Aut(\mathbb{D})$. (To verify that $d\rho$ is what we get when we transfer the Poincaré metric from the upper half-plane to \mathbb{D} , it now suffices to check that integrating $d\rho$ gives the distance between 0 and $t \in \mathbb{D} \cap \mathbb{R}$ to be $\ln |(0,t;-1,+1)|$.)

5. Show that a rational map f OF DEGREE > 1 is conjugate to a polynomial of the form $z \to z^n$ (SOME n > 1) if and only if there exist distinct points $z_0, z_1 \in \hat{\mathbb{C}}$ such that $f^{-1}(z_0) = \{z_0\}$ and $f^{-1}(z_1) = \{z_1\}$.

6. Show that every degree 2 polynomial $z \to \alpha z^2 + \beta z + \gamma$ ($\alpha \neq 0$) is conjugate to a (unique) one of the form $z \to z^2 + c$.

7. Let f be the rational map

$$z \to \frac{-2z-1}{z^2+4z+2}$$

Find the critical points of f and their orbits. Deduce that f is conjugate to $z \to z^2 - 1$.

SB 18/2/13, corrected 21/2/13