Holomorphic Dynamics and Hyperbolic Geometry
 (February-March 2013)
 Week 1 Exercises

1. For the angle-doubling map $t \rightarrow 2 t \bmod 1$ on the circle \mathbb{R} / \mathbb{Z} prove that the periodic points are the points $t \in[0,1)$ of the form $t=m /\left(2^{n}-1\right)$ (where $0 \leq m<2^{n}-1$ with $m, n \in \mathbb{N}$).
2. Show that $h: z \rightarrow z+1 / z$ is a semiconjugacy from $f: z \rightarrow z^{2}$ to $g: z \rightarrow z^{2}-2$ (that is, h is a surjection satisfying $h f=g h$) and that h sends the Julia set of f (the unit circle) onto the real interval $[-2,+2]$.
3. Find a Möbius transformation which sends the upper half plane \mathcal{H}_{+} bijectively onto the unit disc \mathbb{D}. Assuming the structure of $\operatorname{Aut}(\mathbb{D})$ (Prop 2.9) prove that $\operatorname{Aut}\left(\mathcal{H}_{+}\right)=\operatorname{PSL}(2, \mathbb{R})($ Cor 2.10 $)$.
4. Let $w=e^{i \theta}(z-a) /(1-\bar{a} z)$ with $\theta \in \mathbb{R}$ and a in the open unit disc \mathbb{D}. Show that $\left|\frac{d w}{d z}\right|=\frac{1-|w|^{2}}{1-|z|^{2}}$ and hence $\frac{2|d z|}{1-|z|^{2}}=\frac{2|d w|}{1-|w|^{2}}$. Deduce that the infinitesimal metric $d \rho=\frac{2|d z|}{1-|z|^{2}}$ is invariant under $\operatorname{Aut}(\mathbb{D})$.
(To verify that $d \rho$ is what we get when we transfer the Poincaré metric from the upper half-plane to \mathbb{D}, it now suffices to check that integrating d ρ gives the distance between 0 and $t \in \mathbb{D} \cap \mathbb{R}$ to be $\ln |(0, t ;-1,+1)|$.)
5. Show that a rational map f OF DEGREE >1 is conjugate to a polynomial of the form $z \rightarrow z^{n}$ (SOME $n>1$) if and only if there exist distinct points $z_{0}, z_{1} \in \hat{\mathbb{C}}$ such that $f^{-1}\left(z_{0}\right)=\left\{z_{0}\right\}$ and $f^{-1}\left(z_{1}\right)=\left\{z_{1}\right\}$.
6. Show that every degree 2 polynomial $z \rightarrow \alpha z^{2}+\beta z+\gamma(\alpha \neq 0)$ is conjugate to a (unique) one of the form $z \rightarrow z^{2}+c$.
7. Let f be the rational map

$$
z \rightarrow \frac{-2 z-1}{z^{2}+4 z+2}
$$

Find the critical points of f and their orbits. Deduce that f is conjugate to $z \rightarrow z^{2}-1$.

