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1 Introduction

This is the second talk in a projected series of five. I shall try to make them as
independent as possible, so that it will not be necessary to attend talk n in order
to understand talk n + 1. However, there are connections between the talks, so
it will be helpful to have seen the previous talks.

Reflection groups. We saw last week that reflection groups in 2 dimensions
can be described by complex numbers, and in 3 and 4 dimensions can be described
in terms of quaternions.

We also saw that the exceptional series of reflections groups stop in dimension
2 (the dihedral groups of order at least 12) or 4 (the groups F4 and H4) or 8 (the
group E8).

Composition algebras. The doubling of dimensions from the real numbers to
the complex numbers to the quaternions can be taken one stage further, to the
octonions (or Cayley numbers).

From R to C, we lose the ordering.
From C to H, we lose commutativity.
From H to O, we lose associativity, as we shall see.
If you try to double the dimension again, you lose the multiplicative property

of the norms.

2 Basics of octonions

The projective plane of order 2 can be labelled so that the points are labelled by
0, 1, 2, 3, 4, 5, 6 ∈ Z/7Z, and the lines are {t, t + 1, t + 3}.

Define O = R[i0, i1, . . . , i6] such that the lines are quaternion algebras, in the
sense that (it, it+1, it+3) multiply together like (i, j, k) in the quaternions. Thus
i0i1 = −i1i0 = i3 and images under the subscript permutations t 7→ t + 1 and
t 7→ 2t. (There is another symmetry (1, 3)(2, 6)(0, 0)(4, 4), that is the subscript
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permutation (1, 3)(2, 6) followed by negating i0 and i4, which is not quite so easy
to see. Together these generate a non-split group 23L3(2).)

Observe that i0(i1i2) = i0i4 = i5 but (i0i1)i2 = i3i2 = −i5, so the octonions
are non-associative.

Octonion conjugation is the linear map which fixes 1 and negates all it.
Thus if x = a∞+

∑6
t=0 atit then x = a∞−

∑6
t=0 atit. We have xy = y.x as in the

quaternions, because i and j anticommute.
The norm is N(x) = xx and satisfies N(xy) = N(x)N(y) (needs to be

proved!). The associated inner product is

(x, y) =
1

2
(N(x + y)−N(x)−N(y)) =

1

2
(xy + yx) = <(xy).

A trilinear form. The algebra product gives a trilinear form (or scalar triple
product in applied mathematical language).

T (x, y, z) = (xy, z) = <((xy)z)

But if x has norm 1 then left multiplication by x preserves norms, and therefore
inner products, so this is also equal to

(y, x.z) = (y, zx) = <(y(zx))

and (using right-multiplication by y) to

(x, z.y) = (x, yz) = <(x(yz))

so we can remove the brackets in the triple products, and get a cyclically sym-
metric trilinear form.

The units ±1,±it form a ‘non-associative group’, or more precisely a Moufang
loop. In place of associativity we have the three alternative laws

(xy)x = x(yx)
x(xy) = (xx)y
(yx)x = y(xx)

and the three Moufang laws

(xy)(zx) = x(yz)x
x(y(xz)) = (xyx)z
((xy)z)y = x(yzy)

Indeed, all these laws hold in the whole of O, though it takes a certain amount
of effort to prove them.

In particular, the alternative laws imply that any 2-generator subalgebra is
associative (in general it is a copy of the quaternions H).
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3 Reflections

Reflections in 8-space can be encoded by the octonions. Reflection in 1 is the
map

x 7→ −x,

so reflection in r is the map

x 7→ −rrx = −rxr

and the product of these two reflections in the rotation

x 7→ rxr.

In particular, these bimultiplications generate SO(8).
Left-multiplications by octonions of unit norm also preserve norms (and there-

fore inner products), and also generate SO(8). But in a fundamentally different
way, because −1 now acts as −1 instead of as +1.

Similarly for right-multiplications.

Triality is the name given to the connection between left-, right- and bi-
multiplications by units. To see this connection more clearly, consider the set
of triples (x, y, z) of octonions with xyz = 1. A triple of orthogonal linear maps
(α, β, γ) is called an isotopy if

xyz = 1 ⇒ xαyβzγ = 1.

In particular if uu = 1 then (Lu, Ru, Bu) is an isotopy by the first Moufang
law. [Proof: If xyz = 1 then

((ux)(yu))(uzu) = (u(xy)u)(uzu)
= uz−1uuzu
= 1

since the algebra generated by u and z is associative.]
Now xyz = 1 is equivalent to yzx = 1, so if (α, β, γ) is an isotopy then so is

(β, γ, α). In particular, (Ru, Bu, Lu) and (Bu, Lu, Ru) are isotopies.
If (α, β, γ) is an isotopy then so is (−α,−β, γ). But these are the only two

isotopies of the form (−,−, γ).

Proof We may assume γ = 1. Suppose that 1α = a, necessarily of norm
1. Applying the definition of isotopy to the triple (x, y, z) = (1, 1, 1) we have
1 = 1α1β1 = a1β so 1β = a. Next, taking (x, 1, x−1) we have

1 = xα1βx−1 = xαax−1
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so xα = xa and so α = Ra. Similarly, taking (1, y, y−1) we have

1 = 1αyβy−1 = ayβy−1

so yβ = ay and so β = La.
Next we show that a is real: otherwise we can find x and w such that (xa)w 6=

x(aw). There exists y such that ay = w, so

xy = x((aa)y)
= x(a(ay))
6= (xa)(ay) (1)

In other words we have found x, y, z with xyz = 1 but (xa)(ay)z 6= 1, which
contradicts the assumption that (Ra, La, 1) is an isotopy.

Thus there are exactly two isotopies for every γ. The group of isotopies is a
double cover of SO(8), namely the spin group Spin(8).

4 E8 in the octonions

As we saw last week, we can make D4 inside H by taking the quaternion group
Q8 = {±1,±i,±j,±k} and adjoining 1

2
(±1 ± i ± j ± k), to get a unit group

SL2(3) ∼= 2.A4.
If we do the same thing to O to make E8, we take 1

2
(±1± it± it+1± it+3), and

the ‘complements’ 1
2
(±it+2± it+4± it+5± it+6). As we saw last time, this is a copy

of E8, but it is not closed under multiplication: you can check by multiplying
together the last element with t = 0 and t = 1:

1

2
(1 + i0 + i1 + i3).

1

2
(1 + i1 + i2 + i4) =

1

2
(i1 + i3 + i4 + i6).

If this thing was an algebra I’d call it A. But it’s not, so I’ll call it B.

Reflecting in 1√
2
(1−i0) has the effect of swapping 1 with i0, and is exactly what

we need to correct this closure problem. Equivalently, bimultiply by 1√
2
(±1± i0).

(Indeed, we can bimultiply by 1√
2
(±1± it) for any t: but we need to choose the

t we are going to use, and stick with it.)
To prove the result is closed under multiplication, observe first that it is still

invariant under the symmetries on subscripts: t 7→ 2t and (1, 3)(2, 6)(0, 0)(4, 4).

We only need to check multiplication by the 1
2

4
type elements, and by symmetry

we only need to check 1
2
(1+ i0 + i1 + i3) and 1

2
(i0 + i1 + i2 + i4). Multiplying these

by it is easy, so the only non-trivial case is to multiply these two together. The
answer is 1

2
(−1 + i1 + i4 + i6).

So this gives us a (non-associative) ring. Let’s call it E = E0, because geo-
metrically it is a copy of E8.

Indeed, its units are the 240 roots of E8 (which we saw last time), so this
gives us a Moufang loop of order 240.
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5 More copies of E8

The set (±1± i0)B = E(±1± i0) has a nice description.

• (±1± i0)(±it) = ±it ± iu where {0, t, u} is a line of the projective plane.

• (±1 ± i0)(
1
2
(±1 ± i0 ± it ± iu)) is also in a quaternion subalgebra, and we

showed last week that this is of the form x + y for x, y ∈ Q8.

• (1 + i0)
1
2
(1 + i1 + i2 + i4) = 1

2
(1 + i0 + i1 + i2 + i3 + i4 + i5 + i6), and hence

we get all even sign combinations. (Recall last week.)

Call this lattice R. It is again a copy of E8, with roots now of norm 2.
Similarly B(±1 ± i0) = (±1 ± i0)E is just the same except that we get the

odd sign combinations. Call this lattice L. Again it is a copy of E8 with roots of
norm 2.

6 Properties of these lattices

Using the Moufang laws it is quite easy to prove the following remarkable results:

LR = 2B
BL = L
RB = R

Proof

LR = ((1 + i0)E)(E(1 + i0))
= {((1 + i0)x)(y(1 + i0) | x, y ∈ E}
= {(1 + i0)(xy)(1 + i0) | xy ∈ E}
= 2B

The other two are similar, using the other two Moufang laws.
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