1 The roots

The square. We begin by studying the symmetry group of the square.

\[-1+i = \phi(-i) \]
\[1+i = \phi(1) \]

\[-1-i = \phi(-1) \]
\[-i \]
\[1-i = \phi(i) \]

The dihedral group of order 8. In the complex plane, the symmetry group is generated by

- rotation \(r : z \mapsto iz \), and
- reflection \(s : z \mapsto \overline{z} \).

These give rise to the other

- rotations \(z \mapsto -z \), \(z \mapsto -iz \), \(z \mapsto z \), and
- reflections \(z \mapsto i\overline{z} \), \(z \mapsto -\overline{z} \), \(z \mapsto -i\overline{z} \).

Short and long roots. These symmetries can be thought of as permutations of either

- the set \(S = \{ \pm 1, \pm i \} \) of four short roots, or
- the set \(L = \{ \pm 1 \pm i \} \) of four long roots.
Explicitly, we have

- \(r = (1, i, -1, -i) = (1 + i, -1 + i, -1 - i, 1 - i) \),
- \(s = (i, -i) = (1 + i, 1 - i)(-1 + i, -1 - i) \).

Swapping short and long. In other words we can think of the symmetries of either the square or the diamond. Reflecting in a suitable line swaps the two (on a suitable scale):

\[
z \mapsto \frac{1 + i}{\sqrt{2}} z.
\]

Scaling up or down by a factor of \(\sqrt{2} \) gives:

- \(\phi : z \mapsto (1 + i)z : S \to L \);
- \(\psi : z \mapsto \frac{1}{2}(1 + i)z : L \to S \).

A new addition on short roots. If we add together two perpendicular short roots, we get a long root. The map \(\psi \) then takes this result to a short root. This gives us a kind of ‘addition’, \(x \oplus y = \psi(x + y) \) where this is defined, and \(x \oplus y = 0 \) otherwise. Specifically, we have

\[
\begin{align*}
1 \oplus i &= 1 \\
1 \oplus (-i) &= i \\
-1 \oplus i &= -i \\
-1 \oplus (-i) &= -1
\end{align*}
\]

Grading. If we grade the short (and/or long) roots by their projections onto the axis of the reflection \(z \mapsto (1 + i)z/\sqrt{2} \), that is in the order \(-1 < -i < i < 1\), then we find that \(\oplus \) respects this grading in the sense that if \(y < z \) then \(x \oplus y < x \oplus z \) whenever this is defined. This is obvious, because both ordinary addition of roots, and \(\psi \), preserve this grading.

2 The trunk

We shall use the structure of the roots to define some structures on a 4-dimensional vector space \(W \) over a suitable field \(F \) of characteristic 2. We first investigate the field.

The field. Our field must have order \(q = 2^{2k+1} \), for some non-negative integer \(k \), so is built as a suitable quotient \(\mathbb{Z}_2[X]/(f) \), where \(f \) is an irreducible polynomial of degree \(2k + 1 \) over \(\mathbb{Z}_2 \), the integers modulo 2.
Field automorphisms. The Frobenius map \(x \mapsto x^2 \) is an automorphism because

- \((xy)^2 = x^2y^2\) because multiplication is commutative, and
- \((x + y)^2 = x^2 + y^2\) because the cross term 2xy is zero, since 2 = 0.

This automorphism has order \(2k + 1\), since the multiplicative group of \(F\) has order \(2^{2k+1} - 1\), so \(x^{2^{2k+1}-1} = 1\) for all non-zero \(x \in F\), that is \(x^{2^{2k+1}} = x\) for all \(x \in F\).

Conversely, every automorphism is determined by where it takes \([X]\): it must go to one of the \(2k + 1\) roots of \(f\). Thus the automorphism group of this field is cyclic of order \(2k + 1\).

The square root of two. Consider the map \(\sigma\) on \(F\) defined by \(x^\sigma = x^{2k+1}\). Then \(\sigma\) squares to the map \(x \mapsto x^{2^{2k+2}} = x^2\), that is to the Frobenius map. Informally, we have \(x^{\sigma^2} = x^2\) so we can write \(\sigma = \sqrt{2}\). For simplicity later on, write \(\tau = \sigma^{-1}\).

The vector space. We define \(W\) to be the 4-dimensional vector space over \(F\) with basis \(\{e_{-1}, e_{-i}, e_i, e_1\}\), that is \(e_x\) for \(x \in S\).

The inner product. We put a symmetric inner product on \(W\) by defining

- \(e_x.e_{-x} = 1\), and
- \(e_x.e_y = 0\) otherwise,

and extending bilinearly. Thus the inner product is a bilinear map \(W \times W \to F\).

The outer product. We define a symmetric outer product \(\star : W \times W \to W\), by

- \(e_x \star e_y = e_{x \oplus y}\) whenever \(x \oplus y\) is defined, and
- \(e_x \star e_y = 0\) otherwise,

and extending semi-linearly via

\[
u \star (v + \lambda w) = u \star v + \lambda^T(u \star w).
\]

The restricted outer product. The bilinear inner product \(\cdot : W \times W \to F\) corresponds naturally to a linear map \(W \otimes W \to F\), defined by \(\sum_i u_i \otimes v_i \mapsto \sum_i u_i.v_i\). By rank–nullity, this latter map has kernel (null-space) of codimension 1 in \(W \times W\). Call this kernel \(K\).

Similarly, the outer product \(\star : W \times W \to W\) corresponds to a map \(W \otimes W \to W\) defined by \(\sum_i u_i \otimes v_i \mapsto \sum_i u_i \star v_i\). From now on we only consider the outer product restricted to the subspace \(K\) of codimension 1.
3 The branches

We shall be interested in the group of all linear maps on W which preserve both the inner product, and the restricted outer product. First we construct a few elements and subgroups of this group.

Coordinate permutations. The coordinate permutation $e_x \mapsto e_{-x}$ (extended linearly to the map $\sum x \lambda_x e_x \mapsto \sum x \lambda_x e_{-x}$) is clearly a symmetry of the whole construction. This element generates a group of order 2 which I shall call the Weyl group.

Diagonal matrices. Consider the map

$$d_\lambda : \sum x \alpha_x e_x \mapsto \sum x \lambda_x \alpha_x e_x,$$

where $\lambda_1 = \lambda$, $\lambda_i = \lambda^{\sigma - 1}$, and $\lambda_{-x} = \lambda_x^{-1}$. That is, d_λ is the diagonal map $\text{diag}(\lambda^{-1}, \lambda^{1-\sigma}, \lambda^{\sigma - 1}, \lambda)$. Since this map is inverted by conjugation by the non-trivial element of the Weyl group, in order to check that it preserves the two products it is sufficient to check:

- $(\lambda_x e_x) \star (\lambda_{-x} e_{-x}) = \lambda_x \lambda_{-x} (e_x \star e_{-x}) = 1$,
- $(\lambda_1 e_1) \star (\lambda_i e_i) = (\lambda^{1+\sigma-1})^\tau e_1 = \lambda_1 e_1$,
- and, since $\lambda = \lambda^{\sigma+1}_i$, we have $(\lambda_1 e_1) \star (\lambda_{-i} e_{-i}) = (\lambda^{\tau})^\tau e_i = \lambda_i e_i$,

as the other products are all zero.

Thus we obtain a cyclic group of order $q - 1$, as λ ranges over all the non-zero elements of the field. I will call this group the maximal torus T. Since it is normalised by W, we see that $N = TW$ is a dihedral group of order $2(q - 1)$.

A unitriangular matrix. Consider next the matrix

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{pmatrix}$$

interpreted as the linear map which fixes e_{-1} and maps

$$e_{-i} \mapsto e_{-i} + e_{-1},
\quad e_i \mapsto e_i + e_{-i},
\quad e_1 \mapsto e_1 + e_i + e_{-i} + e_{-1}$$

It is easy enough to check by eye that this preserves the inner product. To check the restricted outer product we have five things to check:
\[e_{-1} \ast (e_{-i} + e_{-1}) = e_{-1} \ast e_{-i}; \]
\[e_{-1} \ast (e_i + e_{-i}) = e_{-1} \ast e_i + e_{-1} \ast e_{-i} = e_{-i} + e_{-1}; \]
\[(e_{-i} + e_{-1}) \ast (e_1 + e_i + e_{-i} + e_{-1}) = (e_{-i} + e_{-1}) \ast (e_1 + e_i) = ((e_{-i} \ast e_1) + (e_{-1} \ast e_i) + (e_{-i} \ast e_i + e_{-1} \ast e_1)) = e_i + e_{-i}; \]
\[(e_i + e_{-i}) \ast (e_1 + e_i + e_{-i} + e_{-1}) = (e_i + e_{-i}) \ast (e_1 + e_{-1}) = e_1 + e_{-i} + e_i + e_{-i}, \]
\[e_{-1} \ast (e_1 + e_i + e_{-i} + e_{-1}) + (e_{-i} + e_{-1}) \ast (e_i + e_{-i}) = e_{-1} \ast e_1 + e_{-i} \ast e_i = 0. \]

The lower unitriangular subgroup. It is easy to check that this matrix squares to the matrix
\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{pmatrix}
\]
which has order 2. Conjugating this by \(d_\lambda \) gives a matrix with \(\begin{pmatrix} \lambda^{-\sigma} & 0 \\ \lambda^{-2} & \lambda^{-\sigma} \end{pmatrix} \) in the bottom left-hand corner. Since \(\lambda \mapsto \lambda^{-\sigma} \) is a bijection on the non-zero elements of the field, this gives us a group of order \(q \). Similarly, if we conjugate the original unitriangular matrix by \(d_\lambda \), we get a matrix with \(\begin{pmatrix} 1 & 0 \\ \lambda^{\sigma-1} & 1 \end{pmatrix} \) in the top left-hand corner. This means that modulo the first group of order \(q \), we get another group of order \(q \), lifting to a group of order \(q^2 \) altogether.

This group of order \(q^2 \) is called the unipotent subgroup \(U \), and the group \(B = UT \) is a group of order \(q^2(q - 1) \), consisting of lower triangular matrices. I shall call it the Borel subgroup.

4 The leaves

Definition. Some of the non-zero vectors \(v \in W \) have the special property that \(v = v \ast w \) for some \(w \). Let us call such a vector a leaf. Obviously, if \(v \) is a leaf, then so is \(\lambda v \), for all \(\lambda \neq 0 \). Observe that \(e_1 = e_1 \ast e_1 \), so \(e_1 \) is a leaf. Therefore so is \(e_{-1} \), its image under the Weyl group. Moreover, the Borel subgroup maps \(e_1 \) to \(q^2(q - 1) \) distinct leaves, coming in \(q^2 \) distinct 1-spaces. Thus we get \((q^2 + 1)(q - 1) \) leaves altogether so far, or \(q^2 + 1 \) up to scalar multiplication.

No more leaves. I claim that these are all the leaves. First note that when we order the coordinates via \(-1 < -i < i < 1\), the leading term of \(v \) must appear on both sides of one of the defining equations \(e_1 \ast e_i = e_1 \) etc., so must be \(e_1 \) or \(e_{-1} \). We may also assume the leading coefficient is 1. If the leading term is \(e_{-1} \), then \(v = e_{-1} \).
If the leading term is \(e_1\), then we can use the ‘top part’ of the unipotent subgroup \(U\) to clear out the term in \(e_i\). After that, we can use the ‘bottom part’ of \(U\) to clear out the term in \(e_{-i}\). Thus we can assume \(v = e_1 + \lambda_{-1}e_{-1}\). Since \(v \ast v = 0\) we can assume \(w\) has no term in \(e_1\), and the leading term of \(w\) is \(e_i\) in order to get the leading term correct in

\[
(e_1 + \lambda_{-1}e_{-1}) \ast (e_i + \cdots) = e_1 + \lambda_{-1}e_{-1} + \cdots.
\]

But now we cannot get another term in \(e_{-i}\) from the lower terms in the product, so we must have \(\lambda_{-1} = 0\). This completes the proof that there are no more leaves.

The ovoid. For conformity with the standard terminology, define a point to be a 1-space \(\langle v \rangle\) spanned by a leaf \(v\). We have shown that there are exactly \(q^2 + 1\) points. These points form the Suzuki–Tits ovoid.

Transitivity. We have seen that the symmetries given above generate a group which acts transitively on the \(q^2 + 1\) points. Moreover, the stabilizer of the point \(\langle e_{-1} \rangle\) acts transitively on the remaining \(q^2\) points, so the group acts 2-transitively (and therefore primitively).

The stabilizer of two points. If we fix the points \(\langle e_{-1} \rangle\) and \(\langle e_1 \rangle\) then we must fix

- \(\langle e_{-1} \rangle^\perp = \langle e_{-1}, e_{-i}, e_i \rangle\),
- \(e_1 \ast W = \langle e_1, e_i \rangle\), and
- their intersection \(\langle e_i \rangle\); and
- similarly \(\langle e_{-i} \rangle\).

So any such symmetry must be diagonal, say \(e_x \mapsto \lambda_x e_x\). To preserve the inner product we must have

\[
1 = e_x e_{-x} = (\lambda_x e_x) (\lambda_{-x} e_{-x}) = \lambda_x \lambda_{-x} e_x e_{-x} = \lambda_x \lambda_{-x}
\]

so \(\lambda_{-x} = \lambda_x^{-1}\).

To preserve the restricted outer product, we must have

\[
\lambda_1 e_1 = (\lambda_1 e_1) \ast (\lambda_i e_i) = (\lambda_1 \lambda_i)^\tau e_1 \ast e_i = (\lambda_1 \lambda_i)^\tau e_1,
\]

so \(\lambda_1 = (\lambda_1 \lambda_i)^\tau\), and therefore \((\lambda_1)^\tau = \lambda_1 \lambda_i\), so \(\lambda_i = \lambda_1^{\tau-1}\). Hence the group of diagonal symmetries is no bigger than the group of order \(q-1\) already constructed.

We have shown that the stabilizer of two points has order \(q - 1\).
5 The fruit

The Suzuki group. The group $\Sz(F) = \Sz(q)$ is defined as the set of linear maps on W which preserve the inner product and the restricted outer product. We have shown that $\Sz(q)$ acts 2-transitively on the set of $q^2 + 1$ points, and that the two-point stabilizer has order $q - 1$. Hence

$$|\Sz(q)| = (q^2 + 1)q^2(q - 1).$$

A group-theoretic lemma. If G is a permutation group which is primitive, and perfect, such that the point stabilizer is soluble, then G is simple.

Proof: Let H be the stabilizer of one of the points. Suppose, for a contradiction, that K is a normal subgroup of G, with $1 < K < G$. Then

- H is maximal, since G is primitive;
- K does not fix all the points, so does not fix any point, so $K \not\subseteq H$;
- hence $KH = G$;
- therefore $G/K = HK/K \cong H/H \cap K$ is soluble.

But this contradicts the assumption that G is perfect.

Simplicity. We assume that $q > 2$, and verify the hypotheses of this lemma:

- $\Sz(q)$ is primitive on $q^2 + 1$ points, since it is 2-transitive.
- $\Sz(q)$ is generated by conjugates of its maximal subgroup H, which is in turn generated by conjugates of T. But $T = (TW)'$ so $T \subseteq G'$, and therefore $\Sz(q)$ is perfect.
- the point stabilizer has order $q^2(q - 1)$, so is equal to B, which is lower-triangular, and therefore soluble.

We conclude that $\Sz(q)$ is simple whenever $q > 2$.

The case $q = 2$. On the other hand, if $q = 2$, we have $|\Sz(2)| = 54$, and $\Sz(2)$ acts 2-transitively on the 5 points. Hence $\Sz(2)$ is isomorphic to the Frobenius group of order 20, generated by the permutations $(0, 1, 2, 3, 4)$ and $(1, 2, 4, 3)$.

7