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Abstract

The classical Lie algebras over the complex numbers are all derived
from associative algebras by defining a Lie bracket [A, B] = AB — BA, but
the five exceptional Lie algebras are often defined directly as Lie algebras.
In four cases, however, an alternative approach is available to construct
both the algebra and the corresponding Lie group.

It is well-known that the Lie group G» is naturally defined as the au-
tomorphism group of the octonions (Cayley numbers), and F; as the au-
tomorphism group of the exceptional Jordan algebra, a 27-dimensional al-
gebra of 3 x 3 Hermitian matrices over octonions with product AB + BA.
Moreover, Fg may be defined as the group of linear maps on the Jordan
algebra which preserve a certain ‘determinant’ (but not the algebra prod-
uct).

This leaves just E7, which has a 56-dimensional representation whose
structure is hard to describe. But recognising that this is really a 28-
dimensional quaternionic representation simplifies things significantly, and
reveals tantalising glimpses of an underlying 7-dimensional structure over
the tensor product of two quaternion algebras.

1 Introduction

My motivation comes from finite simple groups, and in particular a desire to
understand the finite groups of Lie type properly. More and more I am coming
to realise that one must first understand the simple Lie groups (over C and R).
Simple Lie groups over C were classified a long time ago: there are three
types of classical groups (orthogonal, unitary and symplectic) and five types
of exceptional groups (called Go, Fy, Eg, Fr7, Eg). It has long been understood
that the orthogonal groups are essentially real, and the symplectic groups are
essentially quaternionic, so that the classical groups over C are interpreted as
series of one real, one complex, and one quaternionic group in each dimension.
Over R one obtains a number of ‘real forms’: for example, the orthogonal
groups over R are parametrized by the signature of the quadratic form (up to



sign), so there are |7 | + 1 different real forms. Exactly one of these is compact,
namely the group corresponding to a positive- (or negative-) definite form. At
the opposite extreme is the split real form, with the numbers of positive and
negative terms being either equal or differing by 1.

On the other hand, the exceptional groups are usually defined directly in
terms of the Lie algebra. To put this in context, the Lie algebra for the orthogonal
groups is the space of skew-symmetric matrices, acted on by conjugation. Thus it
has dimension n(n — 1)/2 rather than n for the natural representation. It should
be clear that one should not use the Lie algebra unless one cannot avoid it.

The details for the exceptional groups are as follows:

Gy, F, FEg¢ FE; FEs
Lie algebra dimension | 14 52 78 133 248
smallest representation | 7 26 27 56 248
representing: 3Es 2FE;
underlying module R26  C%2" M8

It is also known, but perhaps imperfectly understood, that the exceptional groups
arise from octonions (Cayley numbers) in certain ways. The Cayley numbers are
an 8-dimensional non-associative algebra, with an identity element, and G5 is
most naturally defined as the automorphism group of this algebra. Thus it has a
7-dimensional representation.

Now F} can be defined as the automorphism group of the exceptional Jordan
algebra, which consists of 3 x 3 Hermitian matrices over the octonions (so its
dimension is 3+ 3 x 8 = 27), with product AB+ BA. An alternative definition of
the algebra is in terms of three invariant forms: the (linear) trace, the (cubic) de-
terminant (which, surprisingly, is well-defined), and the quadratic form Tr(AA).
Then Fjy is the group of linear maps which preserve the determinant.

Thus Fy has a 26-dimensional representation, which (for the compact real
form) is essentially real, and Eg has a 27-dimensional representation, which (for
the compact real form, but not for the split real form) is essentially complex.
Now the smallest representation of E7 is well-known to have dimension 56, which
appears less closely related. But when you realise that, for the compact real form,
this is really a 28-dimensional quaternionic representation, the pattern becomes
intriguing.

2 A construction of F;

The reflection group of type E;. This is a (small!) finite group, usually
called the Weyl group, which controls the structure of the much larger (infinite!)
Lie group, so we need to understand it first. It is the group generated by the 63
reflections in the following vectors (called roots) in R”, and images under rotating
the 7 coordinates:



e 7 pairs of vectors £(2,0,0,0,0,0,0);
e 7 x 8 = 56 pairs of vectors +(1,0,0,£1,0,+1,+1).

The first type of reflections just negate one of the seven coordinates. The second
type fix three of the coordinates and act on the other four coordinates as a 4 x 4
matrix with entries j:%.

The Z-linear combinations of the roots form a lattice, whose dual lattice is
by definition the set of vectors whose inner products with the roots are integers.
If we scale this by a factor of 2 we find that the minimal vectors in the dual are
the 7 x 4 = 28 pairs of vectors +(0,1,4+1,0,+1,0,0), together with all rotations
of the 7 coordinates.

The quaternionic 28-space. Corresponding to each of these 28 pairs of vec-
tors in R, we take a copy of the quaternions. In order to emphasise the grouping
of the 28 pairs of vectors into 7 sets of 4, I shall write elements of each of seven
4-dimensional (left-)quaternion-spaces as (Hy, Iy, Ji, Ky), for t = 0,1,2,3,4,5,6.
The correspondence is given by

Hy — (0,1,1,0,1,0,0)

Iy — (0,1,—1,0,—1,0,0)
Jo — (0,-1,1,0,—1,0,0)
Ko — (0,—1,-1,0,1,0,0)

and increasing the suffix by 1 (mod 7) corresponds to rotating the coordinates
backwards. Negation of a vector in R corresponds to multiplying the correspond-
ing quaternion (on the right) by j.

Action of a fundamental SU(2). Corresponding to each of the 63 reflections
in the Weyl group, there is a copy of SU(2) in the Lie group. Here we describe
the action on the 28-dimensional quaternionic space of the SU(2) corresponding
to the reflection in £(2,0,0,0,0,0,0), which negates the first coordinate in R".
Now this reflection has exactly 6 orbits of size 2 on our 28 pairs of vectors, and
these orbits correspond to quaternionic 2-spaces in the quaternionic 28-space.
Moreover, there is a canonical choice of basis (only up to signs, unfortunately),
whereby the first basis vector corresponds to the vector in R7 which has first
coordinate 1, and the second basis vector corresponds to first coordinate —1.
The element ¢ = z + wj € SU(2) C H (where z,w € C and ¢g = 1) acts
on these 6 quaternionic 2-spaces in the following way (w.r.t. bases as described
above, which we now specify precisely by giving the signs). The action of ¢ on each

of (Hy, 1), (Ha, Jo) and (Hy, Ky) is then by right-multiplication by (;] U;j ),

in the sense that H; — H;z+ Iz, etc., and by < N u;g) on (Ji, Ky), (K, I5)

wj Zz
and (Iy, Jy).



The other 56 root SU(2)s. In order to specify the other root groups, first look
at the Weyl groups in the seven we have already constructed: that is the matrix

(2 ‘(]) corresponding to the quaternion ¢ = j € SU(2). These elements swap
pairs of coordinates as described above, and can easily be seen to correspond in
the reflection group to sign changes on three coordinates (¢, t+1, t+3). Therefore

these are enough to fuse all the remaining 56 root groups into a single orbit.

Now we can specify one of them, for example the one given by zjj u;] ) act-

ing on the spaces (Hs, K1), (He, I2), (Hs, J4), and (@Zj u;]) acting on (K3, I1),

(Is, J2), and (J5, K4). We now have all 63 root groups, and therefore we have
generators for (the double cover of) (the compact real form of) F.

3 Proofs

My proofs of the above results are mostly of the form: this construction is equiv-
alent to some known construction in the literature. Ultimately I want more
self-contained proofs, that enable us to get all the important properties of the
groups of type E7 directly.

The quartic form. All constructions of the 56-dimensional representation of
2F; mention the quartic form (and/or a polarized version, i.e. a symmetric
quadrilinear form). To describe this, we first split each quaternion into its com-
plex and imaginary parts, say ¢ = ¢’ +¢”7 for any quaternion ¢g. Then the quartic
form has 630 terms which are the images under the Weyl group of H{I).JjK{,
as well as 28 images of —(H{)?(H{)? and 378 images of 1H{H{I\Ij. 1 have
proved explicitly that my generators preserve this quartic form. Notice that the
sign problems which plague the construction of this form have almost completely
disappeared in this treatment.

The stabilizer of a quaternionic coordinate. This stabilizer is a copy of
3Fs. To prove this, one can look at the terms in the quartic form which involve
Hy, and remove the Hy factor. Then one obtains a cubic form (of 45 terms in
27 variables) which is easily shown to be equivalent to L.E. Dickson’s cubic form
from his 1901 construction of 3Es (over finite fields).

One can deduce from this that the group which preserves the quartic form has
dimension (as a variety) at most 133. Conversely, the group we have constructed
has dimension at least 133. Thus the explicit group elements given above do
indeed generate 2F;.



4 Finite groups

The split real form. There are various possible ways of getting an analogue
over finite fields. Quaternions themselves do not really make sense over finite
fields, so perhaps the best way is to convert to the split real form first, before
tensoring with the appropriate finite field. This involves forgetting the quater-
nionic structure (in a suitable way—there is some choice here), so that the rep-
resentation becomes 56-dimensional complex, and then restricting matrix entries
to real numbers gives the split real form.

The result is as follows. To obtain generators for the first fundamental SL(2),
each of the three quaternionic 2-vectors, (Hy, 1), (Ha, Ja), Hy, K4) is replaced
by a pair of real 2-vectors (Hj,I{), (I}, H}), etc., on which we write down the

(1) 1 , 8\ /\91 and _01 é) Similarly on the other
three quaternionic 2-vectors, (Ji, K1), (Kb, I3), (14, J4), we have the action as the
transpose-inverse matrices on (Ji, K{) and (K71, J{') etc. The other orbit of root
SL(2) subgroups is obtained in the same way.

In particular, this gives explicit generators for the root subgroups, a maximal
torus, the Weyl group and all the standard subgroups, such as the parabolic

subgroups and the maximal rank subgroups.

usual generators (

The finite groups (2)FE7(q). The given generators for the split real form can
be interpreted over any field F' whatever, and give generators for the split form
of E7 over F. In particular, if /' = F, is the field of order ¢, we obtain either
E;(q) (if ¢ is even) or a double cover 2E7(q) (if ¢ is odd).

We again obtain immediately generators for the root groups, maximal (split)
torus, Weyl group, parabolic subgroups, and so on. For example, the stabilizer
of one of the 56 coordinate vectors is a parabolic of shape ¢*"(3)Es(q), so by
counting the images of this vector one can obtain the formula for the order of

E7(CI)-

5 Speculations

The quartic form seems to pick out some ‘quaternionic’ structure to the 4-
dimensional pieces like (Hy, Iy, Jo, Ko), so it is tempting to think of the 28-
dimensional quaternionic space as a 7-dimensional ‘space’ over H ®@g H. This
interpretation leads to some nice formulae for actions of certain group elements.

It is also tempting to label the 7 ‘coordinates’ by pure imaginary octonions,
as there is a natural structure of the Fano plane on these ‘coordinates’. This
would give the whole representation of 2E7 the structure H ®r H ®r O*. Does
this mean anything?

What about Eg? Is it 31-dimensional over @ in any meaningful sense?



