A new approach to the Leech lattice

Robert A. Wilson

Queen Mary, University of London
University of Cambridge, 21st October 2009

INTRODUCTION

$$
\text { 4ロ>4吕 } \downarrow 4 \equiv>4 \equiv \Rightarrow \text { 三 }
$$

The Leech lattice

The Leech lattice is a 24-dimensional lattice (i.e. discrete additive subgroup of \mathbb{R}^{24}) with many remarkable properties.

The Leech lattice

The Leech lattice is a 24-dimensional lattice (i.e. discrete additive subgroup of \mathbb{R}^{24}) with many remarkable properties.

- It is the unique even self-dual 24-dimensional lattice with no roots (i.e. vectors of norm 2).

The Leech lattice

The Leech lattice is a 24-dimensional lattice (i.e. discrete additive subgroup of \mathbb{R}^{24}) with many remarkable properties.

- It is the unique even self-dual 24-dimensional lattice with no roots (i.e. vectors of norm 2).
- Its 196560 minimal vectors (of norm 4) describe the unique way to pack 196560 (the maximum possible) unit spheres, all touching a given unit sphere.

The Leech lattice

The Leech lattice is a 24-dimensional lattice (i.e. discrete additive subgroup of \mathbb{R}^{24}) with many remarkable properties.

- It is the unique even self-dual 24-dimensional lattice with no roots (i.e. vectors of norm 2).
- Its 196560 minimal vectors (of norm 4) describe the unique way to pack 196560 (the maximum possible) unit spheres, all touching a given unit sphere.
- Its automorphism group is (a double cover of) Conway's sporadic simple group.

Constructing the Leech lattice

- The standard construction uses the (binary) Golay code, the unique (linear) perfect 3-error-correcting code of any length (or rather the extended code).

Constructing the Leech lattice

- The standard construction uses the (binary) Golay code, the unique (linear) perfect 3-error-correcting code of any length (or rather the extended code).
- There is also a construction in 12 complex dimensions, using the ternary Golay code,

Constructing the Leech lattice

- The standard construction uses the (binary) Golay code, the unique (linear) perfect 3-error-correcting code of any length (or rather the extended code).
- There is also a construction in 12 complex dimensions, using the ternary Golay code,
- and a construction in 6 quaternionic dimensions, using the hexacode, a certain code over the field of order 4.

Constructing the Leech lattice

- The standard construction uses the (binary) Golay code, the unique (linear) perfect 3-error-correcting code of any length (or rather the extended code).
- There is also a construction in 12 complex dimensions, using the ternary Golay code,
- and a construction in 6 quaternionic dimensions, using the hexacode, a certain code over the field of order 4.
- Why not 3 octonionic dimensions?!

Constructing the Leech lattice

- The standard construction uses the (binary) Golay code, the unique (linear) perfect 3-error-correcting code of any length (or rather the extended code).
- There is also a construction in 12 complex dimensions, using the ternary Golay code,
- and a construction in 6 quaternionic dimensions, using the hexacode, a certain code over the field of order 4.
- Why not 3 octonionic dimensions?!
- Several attempts have been made by several people over several decades to find such a construction, without any real success-until now.

PRELIMINARIES:

OCTONIONS AND E_{8}

Octonions

The (real) octonion algebra \mathbb{O} is an 8 -dimensional (non-associative) algebra

Octonions

The (real) octonion algebra \mathbb{O} is an 8 -dimensional (non-associative) algebra

- with an orthonormal basis $\left\{1=i_{\infty}, i_{0}, \ldots, i_{6}\right\}$ labelled by the projective line $P L(7)=\{\infty\} \cup \mathbb{F}_{7}$,

Octonions

The (real) octonion algebra \mathbb{O} is an 8 -dimensional (non-associative) algebra

- with an orthonormal basis $\left\{1=i_{\infty}, i_{0}, \ldots, i_{6}\right\}$ labelled by the projective line $P L(7)=\{\infty\} \cup \mathbb{F}_{7}$,
- with product given by $i_{0} i_{1}=-i_{1} i_{0}=i_{3}$ and images under the subscript permutations $t \mapsto t+1$ and $t \mapsto 2 t$.

Octonions

The (real) octonion algebra \mathbb{O} is an 8 -dimensional (non-associative) algebra

- with an orthonormal basis $\left\{1=i_{\infty}, i_{0}, \ldots, i_{6}\right\}$ labelled by the projective line $P L(7)=\{\infty\} \cup \mathbb{F}_{7}$,
- with product given by $i_{0} i_{1}=-i_{1} i_{0}=i_{3}$ and images under the subscript permutations $t \mapsto t+1$ and $t \mapsto 2 t$.
- The norm is $N(x)=x \bar{x}$, where \bar{x} denotes the octonion conjugate of x, and satisfies $N(x y)=N(x) N(y)$.

Octonions

The (real) octonion algebra \mathbb{O} is an 8 -dimensional (non-associative) algebra

- with an orthonormal basis $\left\{1=i_{\infty}, i_{0}, \ldots, i_{6}\right\}$ labelled by the projective line $P L(7)=\{\infty\} \cup \mathbb{F}_{7}$,
- with product given by $i_{0} i_{1}=-i_{1} i_{0}=i_{3}$ and images under the subscript permutations $t \mapsto t+1$ and $t \mapsto 2 t$.
- The norm is $N(x)=x \bar{x}$, where \bar{x} denotes the octonion conjugate of x, and satisfies $N(x y)=N(x) N(y)$.
- The Moufang laws hold in the octonions: $(x y)(z x)=x(y z) x, x(y(x z))=(x y x) z$ and $((y x) z) x=y(x z x)$.

E_{8}

The E_{8} root system embeds in this algebra in various interesting ways. For example,

E_{8}

The E_{8} root system embeds in this algebra in various interesting ways. For example,

- take the 240 roots to be the 112 octonions $\pm i_{t} \pm i_{u}$ for any distinct $t, u \in P L(7)$, and

E_{8}

The E_{8} root system embeds in this algebra in various interesting ways. For example,

- take the 240 roots to be the 112 octonions $\pm i_{t} \pm i_{u}$ for any distinct $t, u \in P L(7)$, and
- the 128 octonions $\frac{1}{2}\left(\pm 1 \pm i_{0} \pm \cdots \pm i_{6}\right)$ which have an odd number of minus signs.

E_{8}

The E_{8} root system embeds in this algebra in various interesting ways. For example,

- take the 240 roots to be the 112 octonions $\pm i_{t} \pm i_{u}$ for any distinct $t, u \in P L(7)$, and
- the 128 octonions $\frac{1}{2}\left(\pm 1 \pm i_{0} \pm \cdots \pm i_{6}\right)$ which have an odd number of minus signs.
- Denote by L the lattice spanned by these 240 octonions,

E_{8}

The E_{8} root system embeds in this algebra in various interesting ways. For example,

- take the 240 roots to be the 112 octonions $\pm i_{t} \pm i_{u}$ for any distinct $t, u \in P L(7)$, and
- the 128 octonions $\frac{1}{2}\left(\pm 1 \pm i_{0} \pm \cdots \pm i_{6}\right)$ which have an odd number of minus signs.
- Denote by L the lattice spanned by these 240 octonions,
- and write R for \bar{L}.

E_{8}

The E_{8} root system embeds in this algebra in various interesting ways. For example,

- take the 240 roots to be the 112 octonions $\pm i_{t} \pm i_{u}$ for any distinct $t, u \in P L(7)$, and
- the 128 octonions $\frac{1}{2}\left(\pm 1 \pm i_{0} \pm \cdots \pm i_{6}\right)$ which have an odd number of minus signs.
- Denote by L the lattice spanned by these 240 octonions,
- and write R for \bar{L}.
- Let $s=\frac{1}{2}\left(-1+i_{0}+\cdots+i_{6}\right)$, so that $s \in L$ and $\bar{s} \in R$.

Integral octonions

- $A_{0}:=\frac{1}{2}\left(1+i_{0}\right) L=\frac{1}{2} R\left(1+i_{0}\right)$ is closed under multiplication, and forms a copy of the Coxeter-Dickson integral octonions.

Integral octonions

- $A_{0}:=\frac{1}{2}\left(1+i_{0}\right) L=\frac{1}{2} R\left(1+i_{0}\right)$ is closed under multiplication, and forms a copy of the Coxeter-Dickson integral octonions.
- $L=\left(1+i_{0}\right) A_{0}$ and $R=A_{0}\left(1+i_{0}\right)$.

Integral octonions

- $A_{0}:=\frac{1}{2}\left(1+i_{0}\right) L=\frac{1}{2} R\left(1+i_{0}\right)$ is closed under multiplication, and forms a copy of the Coxeter-Dickson integral octonions.
- $L=\left(1+i_{0}\right) A_{0}$ and $R=A_{0}\left(1+i_{0}\right)$.
- It follows immediately from the Moufang law $(x y)(z x)=x(y z) x$ that $L R=\left(1+i_{0}\right) A_{0}\left(1+i_{0}\right)$.

Integral octonions

- $A_{0}:=\frac{1}{2}\left(1+i_{0}\right) L=\frac{1}{2} R\left(1+i_{0}\right)$ is closed under multiplication, and forms a copy of the Coxeter-Dickson integral octonions.
- $L=\left(1+i_{0}\right) A_{0}$ and $R=A_{0}\left(1+i_{0}\right)$.
- It follows immediately from the Moufang law
$(x y)(z x)=x(y z) x$ that $L R=\left(1+i_{0}\right) A_{0}\left(1+i_{0}\right)$.
- Hence $B:=\frac{1}{2}\left(1+i_{0}\right) A_{0}\left(1+i_{0}\right)$ satisfies

$$
\begin{aligned}
L R & =2 B \\
B L & =L \\
R B & =R
\end{aligned}
$$

Properties of L, R and B

- $L \bar{s}=2 B$.

Properties of L, R and B

- $L \bar{s}=2 B$.
- More generally, if ρ is any root in R then $L \rho=2 B$.

Properties of L, R and B

- $L \bar{s}=2 B$.
- More generally, if ρ is any root in R then $L \rho=2 B$.
- $2 L \subset L \bar{s} \subset L$, and therefore $2 L \subset L s \subset L$.

Properties of L, R and B

- $L \bar{s}=2 B$.
- More generally, if ρ is any root in R then $L \rho=2 B$.
- $2 L \subset L \bar{s} \subset L$, and therefore $2 L \subset L s \subset L$.
- $L \bar{s}+L s=L$, so by self-duality of L we have $L \bar{s} \cap L s=2 L$.

DEFINITIONS:

THE LEECH LATTICE AND
 THE CONWAY GROUP

The octonion Leech lattice

The octonionic Leech lattice $\Lambda=\Lambda_{\mathbb{O}}$ is the set of triples (x, y, z) of octonions, with norm
$N(x, y, z)=\frac{1}{2}(x \bar{x}+y \bar{y}+z \bar{z})$, such that

The octonion Leech lattice

The octonionic Leech lattice $\Lambda=\Lambda_{\mathbb{O}}$ is the set of triples (x, y, z) of octonions, with norm
$N(x, y, z)=\frac{1}{2}(x \bar{x}+y \bar{y}+z \bar{z})$, such that

1. $x, y, z \in L$;

The octonion Leech lattice

The octonionic Leech lattice $\Lambda=\Lambda_{\mathbb{O}}$ is the set of triples (x, y, z) of octonions, with norm
$N(x, y, z)=\frac{1}{2}(x \bar{x}+y \bar{y}+z \bar{z})$, such that

1. $x, y, z \in L$;
2. $x+y, x+z, y+z \in L \bar{s}$;

The octonion Leech lattice

The octonionic Leech lattice $\Lambda=\Lambda_{\mathbb{O}}$ is the set of triples (x, y, z) of octonions, with norm
$N(x, y, z)=\frac{1}{2}(x \bar{x}+y \bar{y}+z \bar{z})$, such that

1. $x, y, z \in L ;$
2. $x+y, x+z, y+z \in L \bar{s} ;$
3. $x+y+z \in L s$.

The minimal vectors

The minimal vectors of Λ are the following 196560 vectors of norm 4, where λ is a root of L and
$j, k \in J=\left\{ \pm i_{t} \mid t \in P L(7)\right\}:$

Vectors		Number
$(2 \lambda, 0,0)$	$3 \times 240=$	720
$(\lambda \bar{s}, \pm(\lambda \bar{s}) j, 0)$	$3 \times 240 \times 16=$	11520
$((\lambda s) j, \pm \lambda k, \pm(\lambda j) k)$	$3 \times 240 \times 16 \times 16=$	184320
	Total $=$	196560

The octonionic Conway group

The following maps are symmetries of the octonionic Leech lattice, and generate the double cover $2 \cdot \mathrm{Co}_{1}$ of Conway's group:

The octonionic Conway group

The following maps are symmetries of the octonionic Leech lattice, and generate the double cover $2 \cdot \mathrm{Co}_{1}$ of Conway's group:

- Coordinate permutations

The octonionic Conway group

The following maps are symmetries of the octonionic Leech lattice, and generate the double cover $2 \cdot \mathrm{Co}_{1}$ of Conway's group:

- Coordinate permutations
- $r_{t}:(x, y, z) \mapsto\left(x, y i_{t}, z i_{t}\right)$

The octonionic Conway group

The following maps are symmetries of the octonionic Leech lattice, and generate the double cover $2 \cdot \mathrm{Co}_{1}$ of Conway's group:

- Coordinate permutations
- $r_{t}:(x, y, z) \mapsto\left(x, y i_{t}, z i_{t}\right)$
- $\frac{1}{2} R_{1-i_{0}} R_{1+i_{t}}:(x, y, z) \mapsto$
$\frac{1}{2}\left(\left(x\left(1-i_{0}\right)\right)\left(1+i_{t}\right),\left(y\left(1-i_{0}\right)\right)\left(1+i_{t}\right),\left(z\left(1-i_{0}\right)\right)\left(1+i_{t}\right)\right)$

The octonionic Conway group

The following maps are symmetries of the octonionic Leech lattice, and generate the double cover $2 \cdot \mathrm{Co}_{1}$ of Conway's group:

- Coordinate permutations
- $r_{t}:(x, y, z) \mapsto\left(x, y i_{t}, z i_{t}\right)$
- $\frac{1}{2} R_{1-i_{0}} R_{1+i_{i}}:(x, y, z) \mapsto$
$\frac{1}{2}\left(\left(x\left(1-i_{0}\right)\right)\left(1+i_{t}\right),\left(y\left(1-i_{0}\right)\right)\left(1+i_{t}\right),\left(z\left(1-i_{0}\right)\right)\left(1+i_{t}\right)\right)$
- The matrix

$$
-\frac{1}{2}\left(\begin{array}{ccc}
0 & \bar{s} & \bar{s} \\
s & -1 & 1 \\
s & 1 & -1
\end{array}\right)
$$

interpreted as the map

$$
(x, y, z) \mapsto-\frac{1}{2}((y+z) s, x \bar{s}-y+z, x \bar{s}+y-z)
$$

Remarks

- The above construction is deceptively simple. In fact, however, finding the correct definition was not at all easy.

Remarks

- The above construction is deceptively simple. In fact, however, finding the correct definition was not at all easy.
- I was surely not the first person to notice, around 1980, that the number of minimal vectors in the Leech lattice is

$$
196560=3 \times 240 \times(1+16+16 \times 16) .
$$

Remarks

- The above construction is deceptively simple. In fact, however, finding the correct definition was not at all easy.
- I was surely not the first person to notice, around 1980, that the number of minimal vectors in the Leech lattice is

$$
196560=3 \times 240 \times(1+16+16 \times 16) .
$$

- I was surely not the first person, therefore, to try to build the Leech lattice from triples of integral octonions.

Remarks

- The above construction is deceptively simple. In fact, however, finding the correct definition was not at all easy.
- I was surely not the first person to notice, around 1980, that the number of minimal vectors in the Leech lattice is

$$
196560=3 \times 240 \times(1+16+16 \times 16) .
$$

- I was surely not the first person, therefore, to try to build the Leech lattice from triples of integral octonions.
- But I believe I am the first person to provide a convincing explanation for this numerology.

Remarks

- The above construction is deceptively simple. In fact, however, finding the correct definition was not at all easy.
- I was surely not the first person to notice, around 1980, that the number of minimal vectors in the Leech lattice is

$$
196560=3 \times 240 \times(1+16+16 \times 16) .
$$

- I was surely not the first person, therefore, to try to build the Leech lattice from triples of integral octonions.
- But I believe I am the first person to provide a convincing explanation for this numerology.
- One can also give nice descriptions of many of the maximal subgroups, for example the Suzuki chain subgroups.

SOME PROOFS, I:

THIS IS THE LATTICE

Some symmetries

- The definition of Λ is (obviously) invariant under permutations of the three coordinates, and under sign-changes on any coordinates.

Some symmetries

- The definition of \wedge is (obviously) invariant under permutations of the three coordinates, and under sign-changes on any coordinates.
- It is also invariant under the map

$$
r_{t}:(x, y, z) \mapsto\left(x, y i_{t}, z i_{t}\right)
$$

Some symmetries

- The definition of Λ is (obviously) invariant under permutations of the three coordinates, and under sign-changes on any coordinates.
- It is also invariant under the map

$$
r_{t}:(x, y, z) \mapsto\left(x, y i_{t}, z i_{t}\right)
$$

- Certainly $L i_{t}=L$, so the first condition of the definition is preserved.

Some symmetries

- The definition of Λ is (obviously) invariant under permutations of the three coordinates, and under sign-changes on any coordinates.
- It is also invariant under the map

$$
r_{t}:(x, y, z) \mapsto\left(x, y i_{t}, z i_{t}\right)
$$

- Certainly $L i_{t}=L$, so the first condition of the definition is preserved.
- Then $y\left(1-i_{t}\right) \in L R=2 B=L \bar{s}$, so the second condition is preserved.

Some symmetries

- The definition of Λ is (obviously) invariant under permutations of the three coordinates, and under sign-changes on any coordinates.
- It is also invariant under the map

$$
r_{t}:(x, y, z) \mapsto\left(x, y i_{t}, z i_{t}\right)
$$

- Certainly $L i_{t}=L$, so the first condition of the definition is preserved.
- Then $y\left(1-i_{t}\right) \in L R=2 B=L \bar{s}$, so the second condition is preserved.
- Finally $(y+z)\left(1-i_{t}\right) \in 2 B L=2 L \subset L s$, so the third condition is preserved also.

Some vectors in the Leech lattice

Suppose that λ is any root in L.

Some vectors in the Leech lattice

Suppose that λ is any root in L.

- Then the vector $(\lambda s, \lambda,-\lambda)$ lies in Λ, since $L s \subseteq L$ and $\lambda s+\lambda=\lambda(s+1)=-\lambda \bar{s}$.

Some vectors in the Leech lattice

Suppose that λ is any root in L.

- Then the vector $(\lambda s, \lambda,-\lambda)$ lies in Λ, since $L s \subseteq L$ and $\lambda s+\lambda=\lambda(s+1)=-\lambda \bar{s}$.
- Therefore \wedge contains the vectors $(\lambda s, \lambda, \lambda)+(\lambda, \lambda s,-\lambda)=-(\lambda \bar{s}, \lambda \bar{s}, 0)$, that is, all vectors $(2 \beta, 2 \beta, 0)$ with β a root in $\frac{1}{2} L \bar{s}=B$.

Some vectors in the Leech lattice

Suppose that λ is any root in L.

- Then the vector $(\lambda s, \lambda,-\lambda)$ lies in Λ, since $L s \subseteq L$ and $\lambda s+\lambda=\lambda(s+1)=-\lambda \bar{s}$.
- Therefore \wedge contains the vectors $(\lambda s, \lambda, \lambda)+(\lambda, \lambda s,-\lambda)=-(\lambda \bar{s}, \lambda \bar{s}, 0)$, that is, all vectors $(2 \beta, 2 \beta, 0)$ with β a root in $\frac{1}{2} L \bar{s}=B$.
- Hence \wedge also contains

$$
\left(\lambda\left(1+i_{0}\right), \lambda\left(1+i_{0}\right), 0\right)+\left(\lambda\left(1-i_{0}\right),-\lambda\left(1+i_{0}\right), 0\right)=(2 \lambda, 0,0) .
$$

The minimal vectors

Applying the above symmetries, \wedge contains the following 196560 vectors of norm 4, where λ is a root of L and $j, k \in J=\left\{ \pm i_{t} \mid t \in P L(7)\right\}:$

Vectors		Number
$(2 \lambda, 0,0)$	$3 \times 240=$	720
$(\lambda \bar{s}, \pm(\lambda \bar{s}) j, 0)$	$3 \times 240 \times 16=$	11520
$((\lambda s) j, \pm \lambda k, \pm(\lambda j) k)$	$3 \times 240 \times 16 \times 16=$	184320
	Total $=$	196560

Identification with the real Leech lattice

I claim that the 196560 vectors listed above span \wedge.

Identification with the real Leech lattice

I claim that the 196560 vectors listed above span Λ.

- For if $(x, y, z) \in \Lambda$, then by adding suitable vectors of the third type, we may reduce z to 0 .

Identification with the real Leech lattice

I claim that the 196560 vectors listed above span Λ.

- For if $(x, y, z) \in \Lambda$, then by adding suitable vectors of the third type, we may reduce z to 0 .
- Then we know that $y \in L \bar{s}$, so by adding suitable vectors of the second type we may reduce y to 0 also.

Identification with the real Leech lattice

I claim that the 196560 vectors listed above span \wedge.

- For if $(x, y, z) \in \Lambda$, then by adding suitable vectors of the third type, we may reduce z to 0 .
- Then we know that $y \in L \bar{s}$, so by adding suitable vectors of the second type we may reduce y to 0 also.
- Finally we have that $x \in L \bar{s} \cap L s=2 L$ so we can reduce x to 0 also.

Identification with the real Leech lattice

I claim that the 196560 vectors listed above span \wedge.

- For if $(x, y, z) \in \Lambda$, then by adding suitable vectors of the third type, we may reduce z to 0 .
- Then we know that $y \in L \bar{s}$, so by adding suitable vectors of the second type we may reduce y to 0 also.
- Finally we have that $x \in L \bar{s} \cap L s=2 L$ so we can reduce x to 0 also.
- Thus the claim is proved.

Identification with the real Leech lattice

I claim that the 196560 vectors listed above span Λ.

- For if $(x, y, z) \in \Lambda$, then by adding suitable vectors of the third type, we may reduce z to 0 .
- Then we know that $y \in L \bar{s}$, so by adding suitable vectors of the second type we may reduce y to 0 also.
- Finally we have that $x \in L \bar{s} \cap L s=2 L$ so we can reduce x to 0 also.
- Thus the claim is proved.

At this stage it is easy to identify \wedge with the Leech lattice in a number of different ways.

The MOG labelling

- Label the coordinates of each brick of the MOG as follows:

$\frac{1}{2}$| -1 | i_{0} |
| :---: | :---: |
| i_{4} | i_{5} |
| i_{2} | i_{6} |
| i_{1} | i_{3} |

The MOG labelling

- Label the coordinates of each brick of the MOG as follows:

$$
\frac{1}{2}\left(\begin{array}{cc}
-1 & i_{0} \\
i_{4} & i_{5} \\
i_{2} & i_{6} \\
i_{1} & i_{3}
\end{array}\right.
$$

- the vectors $\left(1-i_{0}\right)(s,-1,-1)$ and $s(-s, 1,1)$ are then

	2	2	2	2	2								
2													
2													
2						$\quad	$	-3	1	1	1	1	1
:---:	:---:	:---:	:---:	:---:	:---:								
1	1	1	1	1	1								
1	1	1	1	1	1								
1	1	1	1	1	1								

...continued

- These vectors are in the standard Leech lattice, and in the octonionic Leech lattice.

...continued

- These vectors are in the standard Leech lattice, and in the octonionic Leech lattice.
- Similarly and by symmetry, the vectors $\left(1 \pm i_{t}\right)(s, 1,1)$ are in both Leech lattices.

...continued

- These vectors are in the standard Leech lattice, and in the octonionic Leech lattice.
- Similarly and by symmetry, the vectors $\left(1 \pm i_{t}\right)(s, 1,1)$ are in both Leech lattices.
- But, as we have seen, these vectors, together with images under (octonionic) coordinate permutations and sign-changes, span the lattice.

The lattice is self-dual

An alternative approach is to show directly from our definition that Λ is an even self-dual lattice with no vectors of norm 2, whence it is the Leech lattice by Conway's characterisation.

SOME PROOFS，II：

THIS IS THE CONWAY

Some ‘diagonal’ symmetries

- Reflection in r (an octonion of norm 1) is the map $x \mapsto-r \bar{x} r$. In particular, $s=-\frac{1}{2}\left(1+i_{t}\right) \bar{s}\left(1+i_{t}\right)$.

Some ‘diagonal’ symmetries

- Reflection in r (an octonion of norm 1) is the map $x \mapsto-r \bar{x} r$. In particular, $s=-\frac{1}{2}\left(1+i_{t}\right) \bar{s}\left(1+i_{t}\right)$.
- Using R_{a} to denote right-multiplication by a, the Moufang law $R_{a} R_{b} R_{a}=R_{a b a}$ implies

$$
\begin{aligned}
& R_{s} R_{1-i_{0}} R_{1+i_{t}}=R_{1+i_{0}} R_{1-i_{t}} R_{s} \\
& R_{s} R_{1-i_{0}} R_{1+i_{t}}=R_{1+i_{0}} R_{1-i_{t}} R_{s} .
\end{aligned}
$$

Some 'diagonal' symmetries

- Reflection in r (an octonion of norm 1) is the map $x \mapsto-r \bar{x} r$. In particular, $s=-\frac{1}{2}\left(1+i_{t}\right) \bar{s}\left(1+i_{t}\right)$.
- Using R_{a} to denote right-multiplication by a, the Moufang law $R_{a} R_{b} R_{a}=R_{\text {aba }}$ implies

$$
\begin{aligned}
& R_{s} R_{1-i_{0}} R_{1+i_{t}}=R_{1+i_{0}} R_{1-i_{i}} R_{s} \\
& R_{s} R_{1-i_{0}} R_{1+i_{t}}=R_{1+i_{0}} R_{1-i_{t}} R_{\bar{s}} .
\end{aligned}
$$

- Therefore

$$
\begin{aligned}
\left(L\left(1-i_{0}\right)\right)\left(1+i_{t}\right) & =(L R) L=2 B L=2 L \\
\left((L \bar{s})\left(1-i_{0}\right)\right)\left(1+i_{t}\right) & =\left(\left(L\left(1+i_{0}\right)\right)\left(1-i_{t}\right)\right) \bar{s}=2 L \bar{s} \\
\left((L s)\left(1-i_{0}\right)\right)\left(1+i_{t}\right) & =\left(\left(L\left(1+i_{0}\right)\right)\left(1-i_{t}\right)\right) s=2 L s .
\end{aligned}
$$

Some 'diagonal' symmetries

- Reflection in r (an octonion of norm 1) is the map $x \mapsto-r \bar{x} r$. In particular, $s=-\frac{1}{2}\left(1+i_{t}\right) \bar{s}\left(1+i_{t}\right)$.
- Using R_{a} to denote right-multiplication by a, the Moufang law $R_{a} R_{b} R_{a}=R_{\text {aba }}$ implies

$$
\begin{aligned}
& R_{s} R_{1-i_{0}} R_{1+i_{t}}=R_{1+i_{0}} R_{1-i_{t}} R_{s} \\
& R_{s} R_{1-i_{0}} R_{1+i_{t}}=R_{1+i_{0}} R_{1-i_{t}} R_{s} .
\end{aligned}
$$

- Therefore

$$
\begin{aligned}
\left(L\left(1-i_{0}\right)\right)\left(1+i_{t}\right) & =(L R) L=2 B L=2 L \\
\left((L \bar{s})\left(1-i_{0}\right)\right)\left(1+i_{t}\right) & =\left(\left(L\left(1+i_{0}\right)\right)\left(1-i_{t}\right)\right) \bar{s}=2 L \bar{s} \\
\left((L s)\left(1-i_{0}\right)\right)\left(1+i_{t}\right) & =\left(\left(L\left(1+i_{0}\right)\right)\left(1-i_{t}\right)\right) s=2 L s .
\end{aligned}
$$

- In other words the map $\frac{1}{2} R_{1-i_{0}} R_{1+i_{t}}$ preserves the octonion Leech lattice.

The monomial subgroup

These symmetries generate a double cover $2 \cdot A_{8}$ of A_{8}.

The monomial subgroup

These symmetries generate a double cover $2 \cdot A_{8}$ of A_{8}.

- For the roots $1+i_{t}$ for $0 \leq t \leq 6$ form a copy of the root system of type A_{7}, whose Weyl group is the symmetric group S_{8}.

The monomial subgroup

These symmetries generate a double cover $2 \cdot A_{8}$ of A_{8}.

- For the roots $1+i_{t}$ for $0 \leq t \leq 6$ form a copy of the root system of type A_{7}, whose Weyl group is the symmetric group S_{8}.
- The product of the reflections in $1+i_{0}$ and $1+i_{t}$ is the $\operatorname{map} x \mapsto \frac{1}{4}\left(1+i_{t}\right)\left(\left(1-i_{0}\right) x\left(1-i_{0}\right)\right)\left(1+i_{t}\right)$ that is the product of two bi-multiplications $\frac{1}{2} B_{1-i_{0}} \frac{1}{2} B_{1+i}$.

The monomial subgroup

These symmetries generate a double cover $2 \cdot A_{8}$ of A_{8}.

- For the roots $1+i_{t}$ for $0 \leq t \leq 6$ form a copy of the root system of type A_{7}, whose Weyl group is the symmetric group S_{8}.
- The product of the reflections in $1+i_{0}$ and $1+i_{t}$ is the $\operatorname{map} x \mapsto \frac{1}{4}\left(1+i_{t}\right)\left(\left(1-i_{0}\right) x\left(1-i_{0}\right)\right)\left(1+i_{t}\right)$ that is the product of two bi-multiplications $\frac{1}{2} B_{1-i_{0}} \frac{1}{2} B_{1+i}$.
- These elements generate the rotation part A_{8} of the Weyl group, and applying the triality automorphism the maps $\frac{1}{2} R_{1-i_{0}} R_{1+i_{t}}$ generate $2 A_{8}$.

The monomial subgroup

These symmetries generate a double cover $2 \cdot A_{8}$ of A_{8}.

- For the roots $1+i_{t}$ for $0 \leq t \leq 6$ form a copy of the root system of type A_{7}, whose Weyl group is the symmetric group S_{8}.
- The product of the reflections in $1+i_{0}$ and $1+i_{t}$ is the $\operatorname{map} x \mapsto \frac{1}{4}\left(1+i_{t}\right)\left(\left(1-i_{0}\right) x\left(1-i_{0}\right)\right)\left(1+i_{t}\right)$ that is the product of two bi-multiplications $\frac{1}{2} B_{1-i_{0}} \frac{1}{2} B_{1+i}$.
- These elements generate the rotation part A_{8} of the Weyl group, and applying the triality automorphism the maps $\frac{1}{2} R_{1-i_{0}} R_{1+i_{t}}$ generate $2 A_{8}$.
- Adjoining coordinate permutations and sign changes we get a group $2 A_{8} \times S_{4}$.

The monomial subgroup

These symmetries generate a double cover $2 \cdot A_{8}$ of A_{8}.

- For the roots $1+i_{t}$ for $0 \leq t \leq 6$ form a copy of the root system of type A_{7}, whose Weyl group is the symmetric group S_{8}.
- The product of the reflections in $1+i_{0}$ and $1+i_{t}$ is the $\operatorname{map} x \mapsto \frac{1}{4}\left(1+i_{t}\right)\left(\left(1-i_{0}\right) x\left(1-i_{0}\right)\right)\left(1+i_{t}\right)$ that is the product of two bi-multiplications $\frac{1}{2} B_{1-i_{0}} \frac{1}{2} B_{1+i}$.
- These elements generate the rotation part A_{8} of the Weyl group, and applying the triality automorphism the maps $\frac{1}{2} R_{1-i_{0}} R_{1+i_{t}}$ generate $2 A_{8}$.
- Adjoining coordinate permutations and sign changes we get a group $2 A_{8} \times S_{4}$.
- Adjoining the symmetry $r_{t}:(x, y, z) \mapsto\left(x, y i_{t}, z i_{t}\right)$, this extends to a group of shape $2^{3+12}\left(A_{8} \times S_{3}\right)$.

The Suzuki chain

The so-called Suzuki chain of subgroups of $2 \cdot \mathrm{Co}_{1}$ is a series of subgroups of the following shapes:

$$
\begin{array}{lll}
2 \cdot A_{9} & \times S_{3} \\
2 \cdot A_{8} & \times S_{4} \\
\left(2 \cdot A_{7}\right. & \times & \left.L_{3}(2)\right): 2 \\
\left(2 \cdot A_{6}\right. & \times & \left.U_{3}(3)\right): 2 \\
\left(2 \cdot A_{5}\right. & \circ & \left.2 \cdot J_{2}\right): 2 \\
\left(2 \cdot A_{4}\right. & \circ & \left.2 \cdot G_{2}(4)\right): 2 \\
& & 6 \cdot \operatorname{Suz}: 2
\end{array}
$$

Generators for the Conway group

- To obtain $2 \cdot A_{9} \times S_{3}$, take the S_{3} of coordinate permutations, and $2 \cdot A_{8}$, and extend $2 \cdot A_{7}$ to $2 \cdot S_{7}$ by adjoining the element $\frac{1}{2} R_{i_{0}-i_{1}} R_{s}^{*}$, where

$$
R_{s}^{*}:=R_{s} \frac{1}{2}\left(\begin{array}{lll}
s & 1 & 1 \\
1 & s & 1 \\
1 & 1 & s
\end{array}\right) .
$$

Generators for the Conway group

- To obtain $2 \cdot A_{9} \times S_{3}$, take the S_{3} of coordinate permutations, and $2 \cdot A_{8}$, and extend $2 \cdot A_{7}$ to $2 \cdot S_{7}$ by adjoining the element $\frac{1}{2} R_{i_{0}-i_{1}} R_{s}^{*}$, where

$$
R_{s}^{*}:=R_{s} \frac{1}{2}\left(\begin{array}{lll}
s & 1 & 1 \\
1 & s & 1 \\
1 & 1 & s
\end{array}\right) .
$$

- Since both this subgroup and the monomial subgroup are maximal in $2 \cdot \mathrm{Co}_{1}$, we now have generators for the Conway group.

Generators for the other Suzuki chain groups

- To obtain $\left(2 \cdot A_{7} \times L_{3}(2)\right) .2$ take the subgroup $2 \cdot A_{7}$ of $2 \cdot A_{8}$ generated by $\frac{1}{2} R_{i_{0}-i_{1}} R_{i_{0}-i_{t}}$, together with the complex reflection group $2 \times L_{3}(2)$ generated by the monomial $2 \times S_{4}$ together with reflection in $(s, 1,1)$, and adjoin $\frac{1}{2} R_{i_{0}-i_{1}} R_{s}^{*}$.

Generators for the other Suzuki chain groups

- To obtain $\left(2 \cdot A_{7} \times L_{3}(2)\right) .2$ take the subgroup $2 \cdot A_{7}$ of $2 \cdot A_{8}$ generated by $\frac{1}{2} R_{i_{0}-i_{1}} R_{i_{0}-i_{t}}$, together with the complex reflection group $2 \times L_{3}(2)$ generated by the monomial $2 \times S_{4}$ together with reflection in $(s, 1,1)$, and adjoin $\frac{1}{2} R_{i_{0}-i_{1}} R_{s}^{*}$.
- To obtain the remaining groups in the list, adjoin to $L_{3}(2)$ the $2 \cdot A_{9-n}$ in $2 \cdot A_{9}$ which commutes with the given $2 \cdot A_{n}$.

The involution centraliser

- The involution centraliser has the shape $2^{1+8} \cdot W\left(\mathrm{E}_{8}\right)^{\prime}$.

The involution centraliser

- The involution centraliser has the shape $2^{1+8} \cdot W\left(\mathrm{E}_{8}\right)^{\prime}$.
- Take the involution $\operatorname{diag}(1,-1,-1)$. Then the normal subgroup 2^{1+8} is generated by $r_{t}=\operatorname{diag}\left(1, i_{t}, i_{t}\right)$ for all t.

The involution centraliser

- The involution centraliser has the shape $2^{1+8} \cdot W\left(\mathrm{E}_{8}\right)^{\prime}$.
- Take the involution $\operatorname{diag}(1,-1,-1)$. Then the normal subgroup 2^{1+8} is generated by $r_{t}=\operatorname{diag}\left(1, i_{t}, i_{t}\right)$ for all t.
- Modulo this, the group $2 \cdot A_{8}$ together with $\operatorname{diag}\left(i_{t}, i_{t}, 1\right)$ generate a maximal subgroup of $W\left(\mathrm{E}_{8}\right)^{\prime}$, which may be extended to the whole group by adjoining an element such as

$$
\frac{1}{2} R_{1-i_{0}}\left(\begin{array}{ccc}
s & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

NOT THE END

$$
\text { 4ロ〉4司 } \downarrow \text { 引 }
$$

Applications

- Perhaps this gives us a better understanding of why the Leech lattice exists.

Applications

- Perhaps this gives us a better understanding of why the Leech lattice exists.
- Perhaps it will give us new ways to prove important properties of the Leech lattice and the Conway group.

Applications

- Perhaps this gives us a better understanding of why the Leech lattice exists.
- Perhaps it will give us new ways to prove important properties of the Leech lattice and the Conway group.
- Perhaps we can use octonions to simplify the construction of the Monster.

Applications

- Perhaps this gives us a better understanding of why the Leech lattice exists.
- Perhaps it will give us new ways to prove important properties of the Leech lattice and the Conway group.
- Perhaps we can use octonions to simplify the construction of the Monster.
- Perhaps it will explain the ‘2-local group’ $B D I(4)$ which contains Co_{3} and looks as though it should be some kind of twist of 'skew-symmetric 3×3 matrices over octonions'.

THE END

