A new approach to the Leech lattice

Robert A. Wilson

Queen Mary, University of London

University of Cambridge, 21st October 2009

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

INTRODUCTION

The Leech lattice is a 24-dimensional lattice (i.e. discrete additive subgroup of \mathbb{R}^{24}) with many remarkable properties.

(ロ) (同) (三) (三) (三) (三) (○) (○)

The Leech lattice is a 24-dimensional lattice (i.e. discrete additive subgroup of \mathbb{R}^{24}) with many remarkable properties.

It is the unique even self-dual 24-dimensional lattice with no roots (i.e. vectors of norm 2).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The Leech lattice is a 24-dimensional lattice (i.e. discrete additive subgroup of \mathbb{R}^{24}) with many remarkable properties.

- It is the unique even self-dual 24-dimensional lattice with no roots (i.e. vectors of norm 2).
- Its 196560 minimal vectors (of norm 4) describe the unique way to pack 196560 (the maximum possible) unit spheres, all touching a given unit sphere.

(日) (日) (日) (日) (日) (日) (日)

The Leech lattice is a 24-dimensional lattice (i.e. discrete additive subgroup of \mathbb{R}^{24}) with many remarkable properties.

- It is the unique even self-dual 24-dimensional lattice with no roots (i.e. vectors of norm 2).
- Its 196560 minimal vectors (of norm 4) describe the unique way to pack 196560 (the maximum possible) unit spheres, all touching a given unit sphere.

(ロ) (同) (三) (三) (三) (三) (○) (○)

 Its automorphism group is (a double cover of) Conway's sporadic simple group.

The standard construction uses the (binary) Golay code, the unique (linear) perfect 3-error-correcting code of any length (or rather the extended code).

(ロ) (同) (三) (三) (三) (三) (○) (○)

The standard construction uses the (binary) Golay code, the unique (linear) perfect 3-error-correcting code of any length (or rather the extended code).

(日) (日) (日) (日) (日) (日) (日)

There is also a construction in 12 complex dimensions, using the ternary Golay code,

- The standard construction uses the (binary) Golay code, the unique (linear) perfect 3-error-correcting code of any length (or rather the extended code).
- There is also a construction in 12 complex dimensions, using the ternary Golay code,
- and a construction in 6 quaternionic dimensions, using the hexacode, a certain code over the field of order 4.

(日) (日) (日) (日) (日) (日) (日)

- The standard construction uses the (binary) Golay code, the unique (linear) perfect 3-error-correcting code of any length (or rather the extended code).
- There is also a construction in 12 complex dimensions, using the ternary Golay code,
- and a construction in 6 quaternionic dimensions, using the hexacode, a certain code over the field of order 4.

(日) (日) (日) (日) (日) (日) (日)

Why not 3 octonionic dimensions?!

- The standard construction uses the (binary) Golay code, the unique (linear) perfect 3-error-correcting code of any length (or rather the extended code).
- There is also a construction in 12 complex dimensions, using the ternary Golay code,
- and a construction in 6 quaternionic dimensions, using the hexacode, a certain code over the field of order 4.
- Why not 3 octonionic dimensions?!
- Several attempts have been made by several people over several decades to find such a construction, without any real success—until now.

PRELIMINARIES:

OCTONIONS AND E₈

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The (real) octonion algebra \mathbb{O} is an 8-dimensional (non-associative) algebra

The (real) octonion algebra \mathbb{O} is an 8-dimensional (non-associative) algebra

with an orthonormal basis {1 = i_∞, i₀, ..., i₆} labelled by the projective line PL(7) = {∞} ∪ F₇,

(ロ) (同) (三) (三) (三) (三) (○) (○)

The (real) octonion algebra \mathbb{O} is an 8-dimensional (non-associative) algebra

with an orthonormal basis {1 = i_∞, i₀, ..., i₆} labelled by the projective line *PL*(7) = {∞} ∪ F₇,

(日) (日) (日) (日) (日) (日) (日)

▶ with product given by $i_0i_1 = -i_1i_0 = i_3$ and images under the subscript permutations $t \mapsto t+1$ and $t \mapsto 2t$.

The (real) octonion algebra \mathbb{O} is an 8-dimensional (non-associative) algebra

with an orthonormal basis {1 = i_∞, i₀, ..., i₆} labelled by the projective line *PL*(7) = {∞} ∪ F₇,

(日) (日) (日) (日) (日) (日) (日)

- ▶ with product given by $i_0i_1 = -i_1i_0 = i_3$ and images under the subscript permutations $t \mapsto t+1$ and $t \mapsto 2t$.
- The norm is N(x) = xx, where x denotes the octonion conjugate of x, and satisfies N(xy) = N(x)N(y).

The (real) octonion algebra \mathbb{O} is an 8-dimensional (non-associative) algebra

with an orthonormal basis {1 = i_∞, i₀, ..., i₆} labelled by the projective line *PL*(7) = {∞} ∪ F₇,

- ▶ with product given by $i_0i_1 = -i_1i_0 = i_3$ and images under the subscript permutations $t \mapsto t+1$ and $t \mapsto 2t$.
- The norm is N(x) = xx, where x denotes the octonion conjugate of x, and satisfies N(xy) = N(x)N(y).
- The Moufang laws hold in the octonions: (xy)(zx) = x(yz)x, x(y(xz)) = (xyx)z and ((yx)z)x = y(xzx).

The E_8 root system embeds in this algebra in various interesting ways. For example,

The E_8 root system embeds in this algebra in various interesting ways. For example,

► take the 240 roots to be the 112 octonions ±*i*_t ± *i*_u for any distinct *t*, *u* ∈ *PL*(7), and

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The E_8 root system embeds in this algebra in various interesting ways. For example,

- ► take the 240 roots to be the 112 octonions ±*i*_t ± *i*_u for any distinct *t*, *u* ∈ *PL*(7), and
- ▶ the 128 octonions $\frac{1}{2}(\pm 1 \pm i_0 \pm \cdots \pm i_6)$ which have an odd number of minus signs.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The E_8 root system embeds in this algebra in various interesting ways. For example,

- ► take the 240 roots to be the 112 octonions ±*i*_t ± *i*_u for any distinct *t*, *u* ∈ *PL*(7), and
- ▶ the 128 octonions $\frac{1}{2}(\pm 1 \pm i_0 \pm \cdots \pm i_6)$ which have an odd number of minus signs.

(日) (日) (日) (日) (日) (日) (日)

Denote by L the lattice spanned by these 240 octonions,

E₈

The E_8 root system embeds in this algebra in various interesting ways. For example,

- ► take the 240 roots to be the 112 octonions ±i_t ± i_u for any distinct t, u ∈ PL(7), and
- ▶ the 128 octonions $\frac{1}{2}(\pm 1 \pm i_0 \pm \cdots \pm i_6)$ which have an odd number of minus signs.

(日) (日) (日) (日) (日) (日) (日)

- Denote by L the lattice spanned by these 240 octonions,
- and write R for \overline{L} .

The E_8 root system embeds in this algebra in various interesting ways. For example,

- ► take the 240 roots to be the 112 octonions ±*i*_t ± *i*_u for any distinct *t*, *u* ∈ *PL*(7), and
- ▶ the 128 octonions $\frac{1}{2}(\pm 1 \pm i_0 \pm \cdots \pm i_6)$ which have an odd number of minus signs.
- Denote by L the lattice spanned by these 240 octonions,
- and write R for \overline{L} .
- Let $\mathbf{s} = \frac{1}{2}(-1 + i_0 + \dots + i_6)$, so that $\mathbf{s} \in L$ and $\overline{\mathbf{s}} \in R$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

► A₀ := ¹/₂(1 + i₀)L = ¹/₂R(1 + i₀) is closed under multiplication, and forms a copy of the Coxeter–Dickson integral octonions.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► A₀ := ¹/₂(1 + i₀)L = ¹/₂R(1 + i₀) is closed under multiplication, and forms a copy of the Coxeter–Dickson integral octonions.

• $L = (1 + i_0)A_0$ and $R = A_0(1 + i_0)$.

- ► A₀ := ¹/₂(1 + i₀)L = ¹/₂R(1 + i₀) is closed under multiplication, and forms a copy of the Coxeter–Dickson integral octonions.
- $L = (1 + i_0)A_0$ and $R = A_0(1 + i_0)$.
- ► It follows immediately from the Moufang law (xy)(zx) = x(yz)x that $LR = (1 + i_0)A_0(1 + i_0)$.

(日) (日) (日) (日) (日) (日) (日)

► A₀ := ¹/₂(1 + i₀)L = ¹/₂R(1 + i₀) is closed under multiplication, and forms a copy of the Coxeter–Dickson integral octonions.

• $L = (1 + i_0)A_0$ and $R = A_0(1 + i_0)$.

- ► It follows immediately from the Moufang law (xy)(zx) = x(yz)x that $LR = (1 + i_0)A_0(1 + i_0)$.
- Hence $B := \frac{1}{2}(1 + i_0)A_0(1 + i_0)$ satisfies

$$LR = 2B$$
$$BL = L$$
$$RB = R$$

(日) (日) (日) (日) (日) (日) (日)

► $L\overline{s} = 2B$.

- ► $L\overline{s} = 2B$.
- More generally, if ρ is any root in *R* then $L\rho = 2B$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- $\blacktriangleright L\overline{s} = 2B.$
- More generally, if ρ is any root in *R* then $L\rho = 2B$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ $2L \subset L\overline{s} \subset L$, and therefore $2L \subset Ls \subset L$.

- $\blacktriangleright L\overline{s} = 2B.$
- More generally, if ρ is any root in *R* then $L\rho = 2B$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- ▶ $2L \subset L\overline{s} \subset L$, and therefore $2L \subset Ls \subset L$.
- $L\overline{s} + Ls = L$, so by self-duality of *L* we have $L\overline{s} \cap Ls = 2L$.

DEFINITIONS:

THE LEECH LATTICE AND THE CONWAY GROUP

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

The octonionic Leech lattice $\Lambda = \Lambda_{\mathbb{O}}$ is the set of triples (x, y, z) of octonions, with norm $N(x, y, z) = \frac{1}{2}(x\overline{x} + y\overline{y} + z\overline{z})$, such that

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The octonionic Leech lattice $\Lambda = \Lambda_{\mathbb{O}}$ is the set of triples (x, y, z) of octonions, with norm $N(x, y, z) = \frac{1}{2}(x\overline{x} + y\overline{y} + z\overline{z})$, such that 1. $x, y, z \in L$;

The octonionic Leech lattice $\Lambda = \Lambda_{\mathbb{O}}$ is the set of triples (x, y, z) of octonions, with norm $N(x, y, z) = \frac{1}{2}(x\overline{x} + y\overline{y} + z\overline{z})$, such that 1. $x, y, z \in L$; 2. $x + y, x + z, y + z \in L\overline{s}$;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The octonionic Leech lattice $\Lambda = \Lambda_{\odot}$ is the set of triples (x, y, z) of octonions, with norm $N(x, y, z) = \frac{1}{2}(x\overline{x} + y\overline{y} + z\overline{z})$, such that 1. $x, y, z \in L$; 2. $x + y, x + z, y + z \in L\overline{s}$; 3. $x + y + z \in Ls$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●
The minimal vectors

The minimal vectors of Λ are the following 196560 vectors of norm 4, where λ is a root of *L* and $j, k \in J = \{\pm i_t \mid t \in PL(7)\}$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(ロ) (同) (三) (三) (三) (○) (○)

The following maps are symmetries of the octonionic Leech lattice, and generate the double cover $2 \cdot Co_1$ of Conway's group:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The following maps are symmetries of the octonionic Leech lattice, and generate the double cover $2 \cdot Co_1$ of Conway's group:

Coordinate permutations

(ロ) (同) (三) (三) (三) (○) (○)

The following maps are symmetries of the octonionic Leech lattice, and generate the double cover $2 \cdot Co_1$ of Conway's group:

- Coordinate permutations
- $r_t : (x, y, z) \mapsto (x, yi_t, zi_t)$

The following maps are symmetries of the octonionic Leech lattice, and generate the double cover $2 \cdot Co_1$ of Conway's group:

- Coordinate permutations
- $\succ r_t: (x, y, z) \mapsto (x, yi_t, zi_t)$
- ▶ $\frac{1}{2} \frac{R_{1-i_0} R_{1+i_t}}{2}$: $(x, y, z) \mapsto \frac{1}{2} ((x(1-i_0))(1+i_t), (y(1-i_0))(1+i_t), (z(1-i_0))(1+i_t))$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The following maps are symmetries of the octonionic Leech lattice, and generate the double cover $2 \cdot Co_1$ of Conway's group:

- Coordinate permutations
- $\succ r_t: (\mathbf{x}, \mathbf{y}, \mathbf{z}) \mapsto (\mathbf{x}, \mathbf{y}i_t, \mathbf{z}i_t)$
- ▶ $\frac{1}{2} \frac{R_{1-i_0} R_{1+i_t}}{2}$: $(x, y, z) \mapsto \frac{1}{2} ((x(1-i_0))(1+i_t), (y(1-i_0))(1+i_t), (z(1-i_0))(1+i_t))$

The matrix

$$-\frac{1}{2}\begin{pmatrix} 0 & \overline{s} & \overline{s} \\ s & -1 & 1 \\ s & 1 & -1 \end{pmatrix}$$

interpreted as the map

$$(x,y,z)\mapsto -rac{1}{2}((y+z)s,x\overline{s}-y+z,x\overline{s}+y-z).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The above construction is deceptively simple. In fact, however, finding the correct definition was not at all easy.

- The above construction is deceptively simple. In fact, however, finding the correct definition was not at all easy.
- I was surely not the first person to notice, around 1980, that the number of minimal vectors in the Leech lattice is

 $196560 = 3 \times 240 \times (1 + 16 + 16 \times 16).$

(ロ) (同) (三) (三) (三) (○) (○)

- The above construction is deceptively simple. In fact, however, finding the correct definition was not at all easy.
- I was surely not the first person to notice, around 1980, that the number of minimal vectors in the Leech lattice is

 $196560 = 3 \times 240 \times (1 + 16 + 16 \times 16).$

(ロ) (同) (三) (三) (三) (○) (○)

I was surely not the first person, therefore, to try to build the Leech lattice from triples of integral octonions.

- The above construction is deceptively simple. In fact, however, finding the correct definition was not at all easy.
- I was surely not the first person to notice, around 1980, that the number of minimal vectors in the Leech lattice is

 $196560 = 3 \times 240 \times (1 + 16 + 16 \times 16).$

- I was surely not the first person, therefore, to try to build the Leech lattice from triples of integral octonions.
- But I believe I am the first person to provide a convincing explanation for this numerology.

- The above construction is deceptively simple. In fact, however, finding the correct definition was not at all easy.
- I was surely not the first person to notice, around 1980, that the number of minimal vectors in the Leech lattice is

 $196560 = 3 \times 240 \times (1 + 16 + 16 \times 16).$

- I was surely not the first person, therefore, to try to build the Leech lattice from triples of integral octonions.
- But I believe I am the first person to provide a convincing explanation for this numerology.
- One can also give nice descriptions of many of the maximal subgroups, for example the Suzuki chain subgroups.

SOME PROOFS, I:

THIS IS THE LEECH LATTICE

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The definition of A is (obviously) invariant under permutations of the three coordinates, and under sign-changes on any coordinates.

- The definition of A is (obviously) invariant under permutations of the three coordinates, and under sign-changes on any coordinates.
- It is also invariant under the map

 $r_t: (\mathbf{x}, \mathbf{y}, \mathbf{z}) \mapsto (\mathbf{x}, \mathbf{y}i_t, \mathbf{z}i_t)$

(ロ) (同) (三) (三) (三) (○) (○)

- The definition of A is (obviously) invariant under permutations of the three coordinates, and under sign-changes on any coordinates.
- It is also invariant under the map

 $r_t: (\mathbf{x}, \mathbf{y}, \mathbf{z}) \mapsto (\mathbf{x}, \mathbf{y}i_t, \mathbf{z}i_t)$

Certainly Li_t = L, so the first condition of the definition is preserved.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The definition of Λ is (obviously) invariant under permutations of the three coordinates, and under sign-changes on any coordinates.
- It is also invariant under the map

 $r_t: (\mathbf{x}, \mathbf{y}, \mathbf{z}) \mapsto (\mathbf{x}, \mathbf{y}i_t, \mathbf{z}i_t)$

Certainly Li_t = L, so the first condition of the definition is preserved.

► Then $y(1 - i_t) \in LR = 2B = L\overline{s}$, so the second condition is preserved.

- The definition of Λ is (obviously) invariant under permutations of the three coordinates, and under sign-changes on any coordinates.
- It is also invariant under the map

 $r_t: (\mathbf{x}, \mathbf{y}, \mathbf{z}) \mapsto (\mathbf{x}, \mathbf{y}\mathbf{i}_t, \mathbf{z}\mathbf{i}_t)$

- Certainly Li_t = L, so the first condition of the definition is preserved.
- ► Then $y(1 i_t) \in LR = 2B = L\overline{s}$, so the second condition is preserved.
- Finally (y + z)(1 − i_t) ∈ 2BL = 2L ⊂ Ls, so the third condition is preserved also.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Suppose that λ is any root in *L*.

Suppose that λ is any root in *L*.

► Then the vector $(\lambda s, \lambda, -\lambda)$ lies in Λ , since $Ls \subseteq L$ and $\lambda s + \lambda = \lambda(s + 1) = -\lambda \overline{s}$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Suppose that λ is any root in *L*.

► Then the vector $(\lambda s, \lambda, -\lambda)$ lies in Λ , since $Ls \subseteq L$ and $\lambda s + \lambda = \lambda(s + 1) = -\lambda \overline{s}$.

(日) (日) (日) (日) (日) (日) (日)

Therefore Λ contains the vectors
(λs, λ, λ) + (λ, λs, −λ) = −(λs, λs, 0), that is, all vectors (2β, 2β, 0) with β a root in ½Ls = B.

Suppose that λ is any root in *L*.

- ► Then the vector $(\lambda s, \lambda, -\lambda)$ lies in Λ , since $Ls \subseteq L$ and $\lambda s + \lambda = \lambda(s + 1) = -\lambda \overline{s}$.
- Therefore Λ contains the vectors
 (λs, λ, λ) + (λ, λs, −λ) = −(λs, λs, 0), that is, all vectors (2β, 2β, 0) with β a root in ½Ls = B.
- Hence A also contains

 $(\lambda(1+i_0),\lambda(1+i_0),0)+(\lambda(1-i_0),-\lambda(1+i_0),0)=(2\lambda,0,0).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The minimal vectors

Applying the above symmetries, Λ contains the following 196560 vectors of norm 4, where λ is a root of *L* and $j, k \in J = \{\pm i_t \mid t \in PL(7)\}$:

Vectors		Number
$(2\lambda, 0, 0)$	3 × 240 =	720
$(\lambda \overline{\mathbf{s}}, \pm (\lambda \overline{\mathbf{s}}) \mathbf{j}, 0)$	3 imes 240 imes 16 =	11520
$((\lambda s)j, \pm \lambda k, \pm (\lambda j)k)$	3 imes 240 imes 16 imes 16 =	184320
	Total =	196560

(日) (日) (日) (日) (日) (日) (日)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

I claim that the 196560 vectors listed above span Λ .

I claim that the 196560 vectors listed above span Λ .

For if (x, y, z) ∈ Λ, then by adding suitable vectors of the third type, we may reduce z to 0.

I claim that the 196560 vectors listed above span Λ .

- For if (x, y, z) ∈ Λ, then by adding suitable vectors of the third type, we may reduce z to 0.
- ► Then we know that y ∈ Ls, so by adding suitable vectors of the second type we may reduce y to 0 also.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

I claim that the 196560 vectors listed above span Λ .

- For if (x, y, z) ∈ Λ, then by adding suitable vectors of the third type, we may reduce z to 0.
- ► Then we know that y ∈ Ls, so by adding suitable vectors of the second type we may reduce y to 0 also.

(日) (日) (日) (日) (日) (日) (日)

Finally we have that $x \in L\overline{s} \cap Ls = 2L$ so we can reduce x to 0 also.

I claim that the 196560 vectors listed above span Λ .

- For if (x, y, z) ∈ Λ, then by adding suitable vectors of the third type, we may reduce z to 0.
- ► Then we know that y ∈ Ls, so by adding suitable vectors of the second type we may reduce y to 0 also.

(日) (日) (日) (日) (日) (日) (日)

- Finally we have that $x \in L\overline{s} \cap Ls = 2L$ so we can reduce x to 0 also.
- Thus the claim is proved.

I claim that the 196560 vectors listed above span Λ .

- For if (x, y, z) ∈ Λ, then by adding suitable vectors of the third type, we may reduce z to 0.
- ► Then we know that y ∈ Ls, so by adding suitable vectors of the second type we may reduce y to 0 also.
- Finally we have that $x \in L\overline{s} \cap Ls = 2L$ so we can reduce x to 0 also.
- Thus the claim is proved.

At this stage it is easy to identify Λ with the Leech lattice in a number of different ways.

(日) (日) (日) (日) (日) (日) (日)

The MOG labelling

Label the coordinates of each brick of the MOG as follows:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The MOG labelling

Label the coordinates of each brick of the MOG as follows:

$$\begin{array}{c|cccc}
-1 & i_{0} \\
i_{4} & i_{5} \\
\hline
i_{2} & i_{2} & i_{6} \\
i_{1} & i_{3}
\end{array}$$

• the vectors $(1 - i_0)(s, -1, -1)$ and s(-s, 1, 1) are then

	2	2	2	2	2	_	-3	1	1	1	1	1
2							1	1	1	1	1	1
2							1	1	1	1	1	1
2							1	1	1	1	1	1

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

...continued

These vectors are in the standard Leech lattice, and in the octonionic Leech lattice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

...continued

- These vectors are in the standard Leech lattice, and in the octonionic Leech lattice.
- Similarly and by symmetry, the vectors (1 ± i_t)(s, 1, 1) are in both Leech lattices.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

...continued

- These vectors are in the standard Leech lattice, and in the octonionic Leech lattice.
- Similarly and by symmetry, the vectors (1 ± i_t)(s, 1, 1) are in both Leech lattices.
- But, as we have seen, these vectors, together with images under (octonionic) coordinate permutations and sign-changes, span the lattice.

(日) (日) (日) (日) (日) (日) (日)

The lattice is self-dual

An alternative approach is to show directly from our definition that Λ is an even self-dual lattice with no vectors of norm 2, whence it is the Leech lattice by Conway's characterisation.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

SOME PROOFS, II:

THIS IS THE CONWAY GROUP

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Some 'diagonal' symmetries

► Reflection in *r* (an octonion of norm 1) is the map $x \mapsto -r\overline{x}r$. In particular, $s = -\frac{1}{2}(1+i_t)\overline{s}(1+i_t)$.
Some 'diagonal' symmetries

- ► Reflection in *r* (an octonion of norm 1) is the map $x \mapsto -r\overline{x}r$. In particular, $s = -\frac{1}{2}(1+i_t)\overline{s}(1+i_t)$.
- Using R_a to denote right-multiplication by a, the Moufang law R_aR_bR_a = R_{aba} implies

Some 'diagonal' symmetries

- ► Reflection in *r* (an octonion of norm 1) is the map $x \mapsto -r\overline{x}r$. In particular, $s = -\frac{1}{2}(1+i_t)\overline{s}(1+i_t)$.
- Using R_a to denote right-multiplication by a, the Moufang law R_aR_bR_a = R_{aba} implies

Therefore

$$\begin{array}{rcl} (L(1-i_0))(1+i_t) &=& (LR)L = 2BL = 2L\\ ((L\overline{s})(1-i_0))(1+i_t) &=& ((L(1+i_0))(1-i_t))\overline{s} = 2L\overline{s}\\ ((Ls)(1-i_0))(1+i_t) &=& ((L(1+i_0))(1-i_t))s = 2Ls. \end{array}$$

(日) (日) (日) (日) (日) (日) (日)

Some 'diagonal' symmetries

- ► Reflection in *r* (an octonion of norm 1) is the map $x \mapsto -r\overline{x}r$. In particular, $s = -\frac{1}{2}(1+i_t)\overline{s}(1+i_t)$.
- Using R_a to denote right-multiplication by a, the Moufang law R_aR_bR_a = R_{aba} implies

Therefore

$$\begin{array}{rcl} (L(1-i_0))(1+i_t) &=& (LR)L = 2BL = 2L\\ ((L\overline{s})(1-i_0))(1+i_t) &=& ((L(1+i_0))(1-i_t))\overline{s} = 2L\overline{s}\\ ((Ls)(1-i_0))(1+i_t) &=& ((L(1+i_0))(1-i_t))s = 2Ls. \end{array}$$

► In other words the map $\frac{1}{2}R_{1-i_0}R_{1+i_t}$ preserves the octonion Leech lattice.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

These symmetries generate a double cover $2 \cdot A_8$ of A_8 .

These symmetries generate a double cover $2 \cdot A_8$ of A_8 .

For the roots 1 + *i*_t for 0 ≤ *t* ≤ 6 form a copy of the root system of type A₇, whose Weyl group is the symmetric group S₈.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

These symmetries generate a double cover $2 \cdot A_8$ of A_8 .

- For the roots 1 + *i*_t for 0 ≤ *t* ≤ 6 form a copy of the root system of type A₇, whose Weyl group is the symmetric group S₈.
- ► The product of the reflections in $1 + i_0$ and $1 + i_t$ is the map $x \mapsto \frac{1}{4}(1 + i_t)((1 i_0)x(1 i_0))(1 + i_t)$ that is the product of two bi-multiplications $\frac{1}{2}B_{1-i_0}\frac{1}{2}B_{1+i_t}$.

・ロト・日本・日本・日本・日本

These symmetries generate a double cover $2 \cdot A_8$ of A_8 .

- For the roots 1 + *i*_t for 0 ≤ *t* ≤ 6 form a copy of the root system of type A₇, whose Weyl group is the symmetric group S₈.
- ► The product of the reflections in $1 + i_0$ and $1 + i_t$ is the map $x \mapsto \frac{1}{4}(1 + i_t)((1 i_0)x(1 i_0))(1 + i_t)$ that is the product of two bi-multiplications $\frac{1}{2}B_{1-i_0}\frac{1}{2}B_{1+i_t}$.
- These elements generate the rotation part A₈ of the Weyl group, and applying the triality automorphism the maps ¹/₂R_{1-i₀}R_{1+i_t} generate 2A₈.

These symmetries generate a double cover $2 \cdot A_8$ of A_8 .

- For the roots 1 + *i*_t for 0 ≤ *t* ≤ 6 form a copy of the root system of type A₇, whose Weyl group is the symmetric group S₈.
- ► The product of the reflections in $1 + i_0$ and $1 + i_t$ is the map $x \mapsto \frac{1}{4}(1 + i_t)((1 i_0)x(1 i_0))(1 + i_t)$ that is the product of two bi-multiplications $\frac{1}{2}B_{1-i_0}\frac{1}{2}B_{1+i_t}$.
- ► These elements generate the rotation part A₈ of the Weyl group, and applying the triality automorphism the maps ¹/₂R_{1-i₀}R_{1+iℓ} generate 2A₈.
- Adjoining coordinate permutations and sign changes we get a group 2A₈ × S₄.

These symmetries generate a double cover $2 \cdot A_8$ of A_8 .

- For the roots 1 + *i*_t for 0 ≤ *t* ≤ 6 form a copy of the root system of type A₇, whose Weyl group is the symmetric group S₈.
- ► The product of the reflections in $1 + i_0$ and $1 + i_t$ is the map $x \mapsto \frac{1}{4}(1 + i_t)((1 i_0)x(1 i_0))(1 + i_t)$ that is the product of two bi-multiplications $\frac{1}{2}B_{1-i_0}\frac{1}{2}B_{1+i_t}$.
- ► These elements generate the rotation part A₈ of the Weyl group, and applying the triality automorphism the maps ¹/₂R_{1-i₀}R_{1+iℓ} generate 2A₈.
- Adjoining coordinate permutations and sign changes we get a group 2A₈ × S₄.
- Adjoining the symmetry r_t : (x, y, z) → (x, yi_t, zi_t), this extends to a group of shape 2³⁺¹²(A₈ × S₃).

シック・ 川 ・ 川田・ ・ 川田・ ・ 日・

The Suzuki chain

The so-called Suzuki chain of subgroups of $2 \cdot Co_1$ is a series of subgroups of the following shapes:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Generators for the Conway group

► To obtain 2·A₉ × S₃, take the S₃ of coordinate permutations, and 2·A₈, and extend 2·A₇ to 2·S₇ by adjoining the element ¹/₂R_{i₀-i₁}R^{*}_s, where

$$R_{s}^{*} := R_{s} \frac{1}{2} \begin{pmatrix} s & 1 & 1 \\ 1 & s & 1 \\ 1 & 1 & s \end{pmatrix}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Generators for the Conway group

► To obtain 2 · A₉ × S₃, take the S₃ of coordinate permutations, and 2 · A₈, and extend 2 · A₇ to 2 · S₇ by adjoining the element ¹/₂R_{i₀-i₁}R^{*}_s, where

$$R_{s}^{*} := R_{s} \frac{1}{2} \begin{pmatrix} s & 1 & 1 \\ 1 & s & 1 \\ 1 & 1 & s \end{pmatrix}$$

Since both this subgroup and the monomial subgroup are maximal in 2 · Co₁, we now have generators for the Conway group.

(日) (日) (日) (日) (日) (日) (日)

Generators for the other Suzuki chain groups

► To obtain (2·A₇ × L₃(2)).2 take the subgroup 2·A₇ of 2·A₈ generated by ½R_{i₀-i₁}R_{i₀-i₁}, together with the complex reflection group 2 × L₃(2) generated by the monomial 2 × S₄ together with reflection in (s, 1, 1), and adjoin ½R_{i₀-i₁}R_s^{*}.

・ロト・日本・日本・日本・日本

Generators for the other Suzuki chain groups

- ► To obtain (2·A₇ × L₃(2)).2 take the subgroup 2·A₇ of 2·A₈ generated by ½R_{i₀-i₁}R_{i₀-i₁}, together with the complex reflection group 2 × L₃(2) generated by the monomial 2 × S₄ together with reflection in (s, 1, 1), and adjoin ½R_{i₀-i₁}R_s^{*}.
- ► To obtain the remaining groups in the list, adjoin to L₃(2) the 2·A_{9-n} in 2·A₉ which commutes with the given 2·A_n.

・ロト・日本・日本・日本・日本

The involution centraliser

• The involution centraliser has the shape $2^{1+8} W(E_8)'$.

The involution centraliser

- The involution centraliser has the shape $2^{1+8} W(E_8)'$.
- ► Take the involution diag(1, -1, -1). Then the normal subgroup 2¹⁺⁸ is generated by r_t = diag(1, i_t, i_t) for all t.

The involution centraliser

- The involution centraliser has the shape $2^{1+8} W(E_8)'$.
- ► Take the involution diag(1, -1, -1). Then the normal subgroup 2¹⁺⁸ is generated by r_t = diag(1, i_t, i_t) for all t.
- Modulo this, the group 2 A₈ together with diag(*i_t*, *i_t*, 1) generate a maximal subgroup of W(E₈)', which may be extended to the whole group by adjoining an element such as

$$\frac{1}{2}R_{1-i_0}\begin{pmatrix} s & 0 & 0\\ 0 & 1 & 1\\ 0 & 1 & -1 \end{pmatrix}$$

(日) (日) (日) (日) (日) (日) (日)

NOT THE END

 Perhaps this gives us a better understanding of why the Leech lattice exists.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- Perhaps this gives us a better understanding of why the Leech lattice exists.
- Perhaps it will give us new ways to prove important properties of the Leech lattice and the Conway group.

(ロ) (同) (三) (三) (三) (○) (○)

- Perhaps this gives us a better understanding of why the Leech lattice exists.
- Perhaps it will give us new ways to prove important properties of the Leech lattice and the Conway group.

(ロ) (同) (三) (三) (三) (○) (○)

Perhaps we can use octonions to simplify the construction of the Monster.

- Perhaps this gives us a better understanding of why the Leech lattice exists.
- Perhaps it will give us new ways to prove important properties of the Leech lattice and the Conway group.
- Perhaps we can use octonions to simplify the construction of the Monster.
- Perhaps it will explain the '2-local group' BDI(4) which contains Co₃ and looks as though it should be some kind of twist of 'skew-symmetric 3 × 3 matrices over octonions'.

THE END