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The Leech lattice

The Leech lattice is a 24-dimensional lattice (i.e. discrete
additive subgroup of R?#) with many remarkable
properties.
» It is the unique even self-dual 24-dimensional lattice
with no roots (i.e. vectors of norm 2).
» Its 196560 minimal vectors (of norm 4) describe the
unique way to pack 196560 (the maximum possible)
unit spheres, all touching a given unit sphere.

» Its automorphism group is (a double cover of)
Conway’s sporadic simple group.
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Constructing the Leech lattice

The standard construction uses the (binary) Golay
code, the unique (linear) perfect 3-error-correcting
code of any length (or rather the extended code).

There is also a construction in 12 complex
dimensions, using the ternary Golay code,

and a construction in 6 quaternionic dimensions,
using the hexacode, a certain code over the field of
order 4.

Why not 3 octonionic dimensions?!

Several attempts have been made by several people
over several decades to find such a construction,
without any real success—until now.
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Octonions

The (real) octonion algebra O is an 8-dimensional
(non-associative) algebra

» with an orthonormal basis {1 = i, o, . - ., Is} labelled
by the projective line PL(7) = {oo} U7,
» with product given by igi; = —ijip = i3 and images

under the subscript permutationst — t + 1 and
t— 2t.

» The normis N(x) = xX, where X denotes the
octonion conjugate of x, and satisfies
N(xy) = NN(y).

» The Moufang laws hold in the octonions:
(xy)(zx) = x(yz)x, x(y(xz)) = (xyx)z and
((yx)z)x =y (xzx).



Es

The Eg root system embeds in this algebra in various
interesting ways. For example,



Es

The Eg root system embeds in this algebra in various
interesting ways. For example,
» take the 240 roots to be the 112 octonions =i; =+ i, for
any distinct t,u € PL(7), and



Es

The Eg root system embeds in this algebra in various
interesting ways. For example,

» take the 240 roots to be the 112 octonions =i; =+ i, for
any distinct t,u € PL(7), and

» the 128 octonions %(il +ip + -+ +ig) which have an
odd number of minus signs.



Es

The Eg root system embeds in this algebra in various
interesting ways. For example,

» take the 240 roots to be the 112 octonions =i; =+ i, for
any distinct t,u € PL(7), and

» the 128 octonions %(il +ip + -+ +ig) which have an
odd number of minus signs.

» Denote by L the lattice spanned by these 240
octonions,



Es

The Eg root system embeds in this algebra in various
interesting ways. For example,

» take the 240 roots to be the 112 octonions =i; =+ i, for
any distinct t,u € PL(7), and

» the 128 octonions %(il +ip + -+ +ig) which have an
odd number of minus signs.

» Denote by L the lattice spanned by these 240
octonions,

» and write R for L.



Es

The Eg root system embeds in this algebra in various
interesting ways. For example,

>

take the 240 roots to be the 112 octonions +i; + i, for
any distinct t,u € PL(7), and

the 128 octonions %(il +ip + -+ +ig) which have an
odd number of minus signs.

Denote by L the lattice spanned by these 240
octonions,

and write R for L.
Lets =2(—1+io+---+1ig), sothats e Land s € R.
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Integral octonions

> Ao := 3(1 +io)L = 3R(1 + o) is closed under
multiplication, and forms a copy of the
Coxeter—Dickson integral octonions.

» L= (1+ip)Aoand R = Ag(1 + ip).

» It follows immediately from the Moufang law
(xy)(zx) = x(yz)x that LR = (1 +ig)Ao(1 + io)-

» Hence B := (1 +ip)Ao(1 + io) satisfies

LR = 2B

BL = L
RB = R
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Properties of L,R and B

Ls = 2B.
More generally, if p is any root in R then Lp = 2B.
2L C Ls C L, and therefore 2L C Ls C L.

LS + Ls = L, so by self-duality of L we have
LsnLs = 2L.
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The octonion Leech lattice

The octonionic Leech lattice A = Ag is the set of triples
(x,y,z) of octonions, with norm
N(x,y,z) = (XX + Yy + zZ), such that

1. xX,y,z €L

2. X+Yy,X+2,y+2zeLs;

3. X+Yy+2zels.



The minimal vectors

The minimal vectors of A are the following 196560 vectors
of norm 4, where ) is a root of L and
j.k ed={£ii |t e PL(7)}:

Vectors Number
(2X,0,0) 3 x 240 = 720
(XS, £(AS)j,0) 3 x 240 x 16 = 11520

((As)j, Ak, £(A\j)k) 3 x 240 x 16 x 16 = 184320
Total = 196560
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» Coordinate permutations

> 1 (X,Y,2) — (X, Yi, Ziy)



The octonionic Conway group

The following maps are symmetries of the octonionic
Leech lattice, and generate the double cover 2:Co; of
Conway’s group:
» Coordinate permutations
> 1 (X,Y,2) — (X, Yi, Ziy)
> %RHORl_ﬂ : (x,)_/,z) - | | |
3 ((x(1=l0))(1+ir), (¥ (1 —i0))(1+1it), (2(1—io)) (1 +1it))



The octonionic Conway group

The following maps are symmetries of the octonionic
Leech lattice, and generate the double cover 2:Co; of
Conway’s group:

>

>

>

Coordinate permutations

e (X,,2) = (X, Vi, Zit)
SRR 1 (X,y,2) —

(XX —=i0))(L+1t), (Y (L —i0))(X+it), (z(L —i0)) (1 +ir))
The matrix

interpreted as the map

1 - —_—
(X7yaz) = —E((y —|—Z)S,XS —Y+2Z,XS+y — Z).
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Remarks

The above construction is deceptively simple. In fact,
however, finding the correct definition was not at all
easy.

| was surely not the first person to notice, around
1980, that the number of minimal vectors in the
Leech lattice is

196560 = 3 x 240 x (1 + 16 + 16 x 16).

| was surely not the first person, therefore, to try to
build the Leech lattice from triples of integral
octonions.

But | believe | am the first person to provide a
convincing explanation for this numerology.

One can also give nice descriptions of many of the
maximal subgroups, for example the Suzuki chain
subgroups.
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Some symmetries

The definition of A is (obviously) invariant under
permutations of the three coordinates, and under
sign-changes on any coordinates.

It is also invariant under the map

My : (Xtyaz) = (X7yitazit)

Certainly Li; = L, so the first condition of the definition
is preserved.

Theny(1—1i;) € LR = 2B = LS, so the second
condition is preserved.

Finally (y +z)(1 —i;) € 2BL = 2L C Ls, so the third
condition is preserved also.
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Some vectors in the Leech lattice

Suppose that ) is any root in L.
» Then the vector (As, A\, —\) liesin A, since Ls C L and
AS+A=A(s+1)=-)s.
» Therefore A contains the vectors
(AS, A\, A) + (A, A8, —A) = —(AS, AS,0), that is, all
vectors (23,2,0) with 3 a root in LS = B.
» Hence A also contains

(AM(L+i0), A(1-+io), 0)+(AM(L—io), —A(1-+i0),0) = (2).0,0).



The minimal vectors

Applying the above symmetries, A contains the following
196560 vectors of norm 4, where ) is a root of L and
j.k €ed={£ii |t e PL(7)}:
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Identification with the real Leech
lattice

| claim that the 196560 vectors listed above span A.

» For if (X,y,z) € A, then by adding suitable vectors of
the third type, we may reduce z to 0.

» Then we know that y € LS, so by adding suitable
vectors of the second type we may reduce y to 0 also.

» Finally we have that x € Ls N Ls = 2L so we can
reduce x to O also.

» Thus the claim is proved.

At this stage it is easy to identify A with the Leech lattice
in a number of different ways.
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The MOG labelling

» Label the coordinates of each brick of the MOG as
follows:

NI

» the vectors (1 —ip)(s,—1,—1) and s(—s, 1,1) are then

2 2 2 2 2 -3
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» These vectors are in the standard Leech lattice, and
in the octonionic Leech lattice.

» Similarly and by symmetry, the vectors (1 +i;)(s,1,1)
are in both Leech lattices.

» But, as we have seen, these vectors, together with
images under (octonionic) coordinate permutations
and sign-changes, span the lattice.



The lattice is self-dual

An alternative approach is to show directly from our
definition that A is an even self-dual lattice with no vectors
of norm 2, whence it is the Leech lattice by Conway’s
characterisation.
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» Using R, to denote right-multiplication by a, the
Moufang law R;RpyRa = Rapa implies

RsRi-i,Ri+i;, = Ru14i,R1-iRs
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Some ‘diagonal’ symmetries

» Reflection in r (an octonion of norm 1) is the map
X — —rXr. In particular, s = —2(1 + i)S(1 + i;).

» Using R, to denote right-multiplication by a, the
Moufang law R;RpyRa = Rapa implies

RsRi-i,Ri+i;, = Ru14i,R1-iRs
RsR1-i,R1+iy, = Rig,R1-Rs.

» Therefore

(L(1 —ip))(1 +i) = (LR)L=2BL=2L
((LS)(X —ig))(1 +1i) = ((L(L+1io))(L —it))s =2LS
((Ls)(X —io))(1 +1i) = ((L(1+1i0))(1—1it))s =2Ls.

» In other words the map %Rl_ioRHit preserves the
octonion Leech lattice.
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The monomial subgroup

These symmetries generate a double cover 2:-Ag of Ag.

>

For the roots 1 + i; for 0 <t < 6 form a copy of the
root system of type A7, whose Weyl group is the
symmetric group Sg.

The product of the reflections in 1 + iy and 1 + i; is the
map x — (1 +i)((1 —io)x(1 —ip))(1 + i) that is the
product of two bi-multiplications £B;_i;1B;;.

These elements generate the rotation part Ag of the
Weyl group, and applying the triality automorphism
the maps 1R;_j,R14; generate 2As.

Adjoining coordinate permutations and sign changes
we get a group 2Ag x S;.

Adjoining the symmetry r; : (X,y,z) — (X, Vi, zi;), this
extends to a group of shape 23712(Ag x S3).



The Suzuki chain

The so-called Suzuki chain of subgroups of 2:Co, is a
series of subgroups of the following shapes:

2'Ag X Sg

2'A8 X S4

(2A7 X L3(2))2
(ZAG X U3(3))2
(2°As o 23,):2
(2°As o 2:Gy(4)):2
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» To obtain 2-Ag x S3, take the S; of coordinate
permutations, and 2-Ag, and extend 2-A; to 2'S; by
adjoining the element %Rio_il RZ, where



Generators for the Conway group

» To obtain 2-Ag x S3, take the S; of coordinate
permutations, and 2-Ag, and extend 2-A; to 2'S; by
adjoining the element %Rio_il RZ, where

» Since both this subgroup and the monomial subgroup
are maximal in 2:Co,, we now have generators for
the Conway group.



Generators for the other Suzuki
chain groups

» To obtain (2-A; x L3(2)).2 take the subgroup 2-A; of
2'Ag generated by %Rio_ilRio_it, together with the
complex reflection group 2 x L3(2) generated by the
monomial 2 x S, together with reflection in (s, 1,1),
and adjoin 3R _i,R:

,il S+



Generators for the other Suzuki
chain groups

» To obtain (2-A; x L3(2)).2 take the subgroup 2-A; of
2'Ag generated by %Rio_ilRio_it, together with the
complex reflection group 2 x L3(2) generated by the
monomial 2 x S, together with reflection in (s, 1,1),
and adjoin $R;,_i,RZ.

» To obtain the remaining groups in the list, adjoin to
L3(2) the 2:Ag_,, in 2:Ag which commutes with the
given 2°A,.
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The involution centraliser

» The involution centraliser has the shape 2+8-W (Eg)'.

» Take the involution diag(1, —1, —1). Then the normal
subgroup 28 is generated by r, = diag(1, iy, i;) for all
t.

» Modulo this, the group 2-Ag together with diad(i, i, 1)
generate a maximal subgroup of W (Eg)’, which may
be extended to the whole group by adjoining an
element such as

0
1].
-1

1
éRl—io (

oo wm
=)



NOT THE END
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Applications

Perhaps this gives us a better understanding of why
the Leech lattice exists.

Perhaps it will give us new ways to prove important
properties of the Leech lattice and the Conway group.

Perhaps we can use octonions to simplify the
construction of the Monster.

Perhaps it will explain the ‘2-local group’ BDI(4)
which contains Coz and looks as though it should be
some kind of twist of ‘skew-symmetric 3 x 3 matrices
over octonions’.



THE END



