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INTRODUCTION



The Leech lattice

The Leech lattice is a 24-dimensional lattice (i.e. discrete
additive subgroup of R24) with many remarkable
properties.

I It is the unique even self-dual 24-dimensional lattice
with no roots (i.e. vectors of norm 2).

I Its 196560 minimal vectors (of norm 4) describe the
unique way to pack 196560 (the maximum possible)
unit spheres, all touching a given unit sphere.

I Its automorphism group is (a double cover of)
Conway’s sporadic simple group.
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Constructing the Leech lattice

I The standard construction uses the (binary) Golay
code, the unique (linear) perfect 3-error-correcting
code of any length (or rather the extended code).

I There is also a construction in 12 complex
dimensions, using the ternary Golay code,

I and a construction in 6 quaternionic dimensions,
using the hexacode, a certain code over the field of
order 4.

I Why not 3 octonionic dimensions?!
I Several attempts have been made by several people

over several decades to find such a construction,
without any real success—until now.
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PRELIMINARIES:

OCTONIONS AND E8



Octonions

The (real) octonion algebra O is an 8-dimensional
(non-associative) algebra

I with an orthonormal basis {1 = i∞, i0, . . . , i6} labelled
by the projective line PL(7) = {∞} ∪ F7,

I with product given by i0i1 = −i1i0 = i3 and images
under the subscript permutations t 7→ t + 1 and
t 7→ 2t .

I The norm is N(x) = xx , where x denotes the
octonion conjugate of x , and satisfies
N(xy) = N(x)N(y).

I The Moufang laws hold in the octonions:
(xy)(zx) = x(yz)x , x(y(xz)) = (xyx)z and
((yx)z)x = y(xzx).
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E8

The E8 root system embeds in this algebra in various
interesting ways. For example,

I take the 240 roots to be the 112 octonions ±it ± iu for
any distinct t , u ∈ PL(7), and

I the 128 octonions 1
2(±1± i0 ± · · · ± i6) which have an

odd number of minus signs.
I Denote by L the lattice spanned by these 240

octonions,
I and write R for L.
I Let s = 1

2(−1 + i0 + · · ·+ i6), so that s ∈ L and s ∈ R.
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Integral octonions

I A0 := 1
2(1 + i0)L = 1

2R(1 + i0) is closed under
multiplication, and forms a copy of the
Coxeter–Dickson integral octonions.

I L = (1 + i0)A0 and R = A0(1 + i0).
I It follows immediately from the Moufang law

(xy)(zx) = x(yz)x that LR = (1 + i0)A0(1 + i0).
I Hence B := 1

2(1 + i0)A0(1 + i0) satisfies

LR = 2B
BL = L
RB = R
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Properties of L,R and B

I Ls = 2B.

I More generally, if ρ is any root in R then Lρ = 2B.
I 2L ⊂ Ls ⊂ L, and therefore 2L ⊂ Ls ⊂ L.
I Ls + Ls = L, so by self-duality of L we have

Ls ∩ Ls = 2L.
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DEFINITIONS:

THE LEECH LATTICE
AND

THE CONWAY GROUP



The octonion Leech lattice

The octonionic Leech lattice Λ = ΛO is the set of triples
(x , y , z) of octonions, with norm
N(x , y , z) = 1

2(xx + yy + zz), such that

1. x , y , z ∈ L;

2. x + y , x + z, y + z ∈ Ls;

3. x + y + z ∈ Ls.



The octonion Leech lattice

The octonionic Leech lattice Λ = ΛO is the set of triples
(x , y , z) of octonions, with norm
N(x , y , z) = 1

2(xx + yy + zz), such that

1. x , y , z ∈ L;

2. x + y , x + z, y + z ∈ Ls;

3. x + y + z ∈ Ls.



The octonion Leech lattice

The octonionic Leech lattice Λ = ΛO is the set of triples
(x , y , z) of octonions, with norm
N(x , y , z) = 1

2(xx + yy + zz), such that

1. x , y , z ∈ L;

2. x + y , x + z, y + z ∈ Ls;

3. x + y + z ∈ Ls.



The octonion Leech lattice

The octonionic Leech lattice Λ = ΛO is the set of triples
(x , y , z) of octonions, with norm
N(x , y , z) = 1

2(xx + yy + zz), such that

1. x , y , z ∈ L;

2. x + y , x + z, y + z ∈ Ls;

3. x + y + z ∈ Ls.



The minimal vectors

The minimal vectors of Λ are the following 196560 vectors
of norm 4, where λ is a root of L and
j , k ∈ J = {±it | t ∈ PL(7)}:

Vectors Number
(2λ, 0, 0) 3× 240 = 720
(λs,±(λs)j , 0) 3× 240× 16 = 11520
((λs)j ,±λk ,±(λj)k) 3× 240× 16× 16 = 184320

Total = 196560



The octonionic Conway group
The following maps are symmetries of the octonionic
Leech lattice, and generate the double cover 2.Co1 of
Conway’s group:

I Coordinate permutations
I rt : (x , y , z) 7→ (x , yit , zit)
I 1

2R1−i0R1+it : (x , y , z) 7→
1
2((x(1− i0))(1+ it), (y(1− i0))(1+ it), (z(1− i0))(1+ it))

I The matrix

−1
2

0 s s
s −1 1
s 1 −1


interpreted as the map

(x , y , z) 7→ −1
2

((y + z)s, xs − y + z, xs + y − z).
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Remarks
I The above construction is deceptively simple. In fact,

however, finding the correct definition was not at all
easy.

I I was surely not the first person to notice, around
1980, that the number of minimal vectors in the
Leech lattice is

196560 = 3× 240× (1 + 16 + 16× 16).

I I was surely not the first person, therefore, to try to
build the Leech lattice from triples of integral
octonions.

I But I believe I am the first person to provide a
convincing explanation for this numerology.

I One can also give nice descriptions of many of the
maximal subgroups, for example the Suzuki chain
subgroups.
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SOME PROOFS, I:

THIS IS THE LEECH
LATTICE



Some symmetries

I The definition of Λ is (obviously) invariant under
permutations of the three coordinates, and under
sign-changes on any coordinates.

I It is also invariant under the map

rt : (x , y , z) 7→ (x , yit , zit)

I Certainly Lit = L, so the first condition of the definition
is preserved.

I Then y(1− it) ∈ LR = 2B = Ls, so the second
condition is preserved.

I Finally (y + z)(1− it) ∈ 2BL = 2L ⊂ Ls, so the third
condition is preserved also.
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Some vectors in the Leech lattice

Suppose that λ is any root in L.

I Then the vector (λs, λ,−λ) lies in Λ, since Ls ⊆ L and
λs + λ = λ(s + 1) = −λs.

I Therefore Λ contains the vectors
(λs, λ, λ) + (λ, λs,−λ) = −(λs, λs, 0), that is, all
vectors (2β, 2β, 0) with β a root in 1

2Ls = B.
I Hence Λ also contains

(λ(1+i0), λ(1+i0), 0)+(λ(1−i0),−λ(1+i0), 0) = (2λ, 0, 0).
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vectors (2β, 2β, 0) with β a root in 1

2Ls = B.

I Hence Λ also contains

(λ(1+i0), λ(1+i0), 0)+(λ(1−i0),−λ(1+i0), 0) = (2λ, 0, 0).
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The minimal vectors

Applying the above symmetries, Λ contains the following
196560 vectors of norm 4, where λ is a root of L and
j , k ∈ J = {±it | t ∈ PL(7)}:

Vectors Number
(2λ, 0, 0) 3× 240 = 720
(λs,±(λs)j , 0) 3× 240× 16 = 11520
((λs)j ,±λk ,±(λj)k) 3× 240× 16× 16 = 184320

Total = 196560



Identification with the real Leech
lattice

I claim that the 196560 vectors listed above span Λ.

I For if (x , y , z) ∈ Λ, then by adding suitable vectors of
the third type, we may reduce z to 0.

I Then we know that y ∈ Ls, so by adding suitable
vectors of the second type we may reduce y to 0 also.

I Finally we have that x ∈ Ls ∩ Ls = 2L so we can
reduce x to 0 also.

I Thus the claim is proved.

At this stage it is easy to identify Λ with the Leech lattice
in a number of different ways.
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The MOG labelling

I Label the coordinates of each brick of the MOG as
follows:

i1 i3

i2 i6

i4 i5

−1 i0

1
2

I the vectors (1− i0)(s,−1,−1) and s(−s, 1, 1) are then

2 2 2 2 2

2

2

2

−3 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
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...continued

I These vectors are in the standard Leech lattice, and
in the octonionic Leech lattice.

I Similarly and by symmetry, the vectors (1± it)(s, 1, 1)
are in both Leech lattices.

I But, as we have seen, these vectors, together with
images under (octonionic) coordinate permutations
and sign-changes, span the lattice.
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The lattice is self-dual

An alternative approach is to show directly from our
definition that Λ is an even self-dual lattice with no vectors
of norm 2, whence it is the Leech lattice by Conway’s
characterisation.



SOME PROOFS, II:

THIS IS THE CONWAY
GROUP



Some ‘diagonal’ symmetries

I Reflection in r (an octonion of norm 1) is the map
x 7→ −rxr . In particular, s = −1

2(1 + it)s(1 + it).

I Using Ra to denote right-multiplication by a, the
Moufang law RaRbRa = Raba implies

RsR1−i0R1+it = R1+i0R1−it Rs

RsR1−i0R1+it = R1+i0R1−it Rs.

I Therefore

(L(1− i0))(1 + it) = (LR)L = 2BL = 2L
((Ls)(1− i0))(1 + it) = ((L(1 + i0))(1− it))s = 2Ls
((Ls)(1− i0))(1 + it) = ((L(1 + i0))(1− it))s = 2Ls.

I In other words the map 1
2R1−i0R1+it preserves the

octonion Leech lattice.
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The monomial subgroup

These symmetries generate a double cover 2.A8 of A8.

I For the roots 1 + it for 0 ≤ t ≤ 6 form a copy of the
root system of type A7, whose Weyl group is the
symmetric group S8.

I The product of the reflections in 1 + i0 and 1 + it is the
map x 7→ 1

4(1 + it)((1− i0)x(1− i0))(1 + it) that is the
product of two bi-multiplications 1

2B1−i0
1
2B1+it .

I These elements generate the rotation part A8 of the
Weyl group, and applying the triality automorphism
the maps 1

2R1−i0R1+it generate 2A8.
I Adjoining coordinate permutations and sign changes

we get a group 2A8 × S4.
I Adjoining the symmetry rt : (x , y , z) 7→ (x , yit , zit), this

extends to a group of shape 23+12(A8 × S3).
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The Suzuki chain

The so-called Suzuki chain of subgroups of 2.Co1 is a
series of subgroups of the following shapes:

2.A9 × S3

2.A8 × S4

(2.A7 × L3(2)):2
(2.A6 × U3(3)):2
(2.A5 ◦ 2.J2):2
(2.A4 ◦ 2.G2(4)):2

6.Suz:2



Generators for the Conway group

I To obtain 2.A9 × S3, take the S3 of coordinate
permutations, and 2.A8, and extend 2.A7 to 2.S7 by
adjoining the element 1

2Ri0−i1R
∗
s , where

R∗
s := Rs

1
2

s 1 1
1 s 1
1 1 s

 .

I Since both this subgroup and the monomial subgroup
are maximal in 2.Co1, we now have generators for
the Conway group.
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Generators for the other Suzuki
chain groups

I To obtain (2.A7 × L3(2)).2 take the subgroup 2.A7 of
2.A8 generated by 1

2Ri0−i1Ri0−it , together with the
complex reflection group 2× L3(2) generated by the
monomial 2× S4 together with reflection in (s, 1, 1),
and adjoin 1

2Ri0−i1R
∗
s .

I To obtain the remaining groups in the list, adjoin to
L3(2) the 2.A9−n in 2.A9 which commutes with the
given 2.An.
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The involution centraliser

I The involution centraliser has the shape 21+8.W (E8)
′.

I Take the involution diag(1,−1,−1). Then the normal
subgroup 21+8 is generated by rt = diag(1, it , it) for all
t .

I Modulo this, the group 2.A8 together with diag(it , it , 1)
generate a maximal subgroup of W (E8)

′, which may
be extended to the whole group by adjoining an
element such as

1
2

R1−i0

s 0 0
0 1 1
0 1 −1

 .
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NOT THE END



Applications

I Perhaps this gives us a better understanding of why
the Leech lattice exists.

I Perhaps it will give us new ways to prove important
properties of the Leech lattice and the Conway group.

I Perhaps we can use octonions to simplify the
construction of the Monster.

I Perhaps it will explain the ‘2-local group’ BDI(4)
which contains Co3 and looks as though it should be
some kind of twist of ‘skew-symmetric 3× 3 matrices
over octonions’.
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THE END


