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Abstract

We give a new, elementary, description of the Leech lattice in terms
of octonions, thereby providing the first real explanation of the fact
that the number of minimal vectors, 196560, can be expressed in the
form 3× 240× (1 + 16 + 16× 16). We also give an easy proof that it
is an even self-dual lattice.

1 Introduction

The Leech lattice occupies a special place in mathematics. It is the unique 24-
dimensional even self-dual lattice with no vectors of norm 2, and defines the
unique densest lattice packing of spheres in 24 dimensions. Its automorphism
group is very large, and is the double cover of Conway’s group Co1 [2], one
of the most important of the 26 sporadic simple groups. This group plays a
crucial role in the construction of the Monster [13, 4], which is the largest
of the sporadic simple groups, and has connections with modular forms (so-
called ‘Monstrous Moonshine’) and many other areas, including theoretical
physics. The book by Conway and Sloane [5] is a good introduction to this
lattice and its many applications.

It is not surprising therefore that there is a huge literature on the Leech
lattice, not just within mathematics but in the physics literature too. Many
attempts have been made in particular to find simplified constructions (see
for example the 23 constructions described in [3] and the four constructions
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described in [15]). In the latter are described a 12-dimensional complex Leech
lattice, whose symmetry group is a sextuple cover of the sporadic Suzuki
group [16]; a 6-dimensional quaternionic Leech lattice [17], whose symmetry
group is a double cover of an exceptional group of Lie type, namely G2(4);
and a 3-dimensional quaternionic version, known as the icosian Leech lattice
[14, 1], which exhibits the double of cover of the Hall–Janko group as a
group generated by quaternionic reflections. This last is based on the ring
of icosians discovered by Hamilton, which is an algebraic version of the H4

reflection group.
In this paper I show how to construct a 3-dimensional octonionic Leech

lattice, based on the Coxeter–Dickson non-associative ring of integral octo-
nions [8], which is an algebraic version of the E8 lattice.

2 Octonions and E8

The book by Conway and Smith [6] gives much useful background on oc-
tonions. The (real) octonion algebra is an 8-dimensional (non-associative)
algebra with an orthonormal basis {1 = i∞, i0, . . . , i6} labeled by the projec-
tive line PL(7) = {∞} ∪ F7, with product given by i0i1 = −i1i0 = i3 and
images under the subscript permutations t 7→ t + 1 and t 7→ 2t. The norm
is N(x) = xx, where x denotes the octonion conjugate of x, and satisfies
N(xy) = N(x)N(y).

The E8 root system embeds in this algebra in various interesting ways.
For example, we may take the 240 roots to be the 112 octonions ±it ± iu
for any distinct t, u ∈ PL(7), and the 128 octonions 1

2
(±1 ± i0 ± · · · ± i6)

which have an odd number of minus signs. Denote by L the lattice spanned
by these 240 octonions, and write R for L. Let s = 1

2
(−1 + i0 + · · ·+ i6), so

that s ∈ L and s ∈ R.
It is well-known that 1

2
(1+i0)L = 1

2
R(1+i0) is closed under multiplication,

and forms a copy of the Coxeter–Dickson integral octonions. Denote this
non-associative ring by A, so that L = (1 + i0)A and R = A(1 + i0). It
follows immediately from the Moufang law (xy)(zx) = x(yz)x that LR =
(1 + i0)A(1 + i0). Writing B = 1

2
(1 + i0)A(1 + i0), we have LR = 2B, and

the other two Moufang laws imply that BL = L and RB = R.
Since s ∈ R we have Ls ⊆ LR = 2B, but 2B is spanned by its 240 roots,

all of which lie in Ls, so Ls = 2B. Indeed, the same argument shows that
if ρ is any root in R then Lρ = 2B. More explicitly, it is easy to show (and
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presumably well-known) that the roots of B are ±it for t ∈ PL(7) together
with 1

2
(±1 ± it ± it+1 ± it+3) and 1

2
(±it+2 ± it+4 ± it+5 ± it+6) for t ∈ F7.

Hence 2L ⊂ 2B ⊂ L, that is 2L ⊂ Ls ⊂ L, from which we deduce also
2L ⊂ Ls ⊂ L. Moreover, Ls + Ls = L, so by self-duality of L we have
Ls ∩ Ls = 2L.

3 The octonion Leech lattice

Using L as our basic copy of E8 in the octonions, we define the octonionic
Leech lattice Λ = ΛO as the set of triples (x, y, z) of octonions, with norm
N(x, y, z) = 1

2
(xx + yy + zz), such that

1. x, y, z ∈ L;

2. x + y, x + z, y + z ∈ Ls;

3. x + y + z ∈ Ls.

It is clear that the definition of Λ is invariant under permutations of
the three coordinates. We show now that it is invariant under the map rt :
(x, y, z) 7→ (x, yit, zit) which right-multiplies two coordinates by it. Certainly
Lit = L, so the first condition of the definition is preserved. Then y(1− it) ∈
LR = 2B = Ls, so the second condition is preserved. Finally (y+z)(1−it) ∈
2BL = 2L ⊂ Ls, so the third condition is preserved also. It follows that the
definition is invariant under sign-changes of any of the three coordinates.

Suppose that λ is any root in L. Then the vector (λs, λ,−λ) lies in Λ,
since Ls ⊆ L and λs+λ = λ(s+1) = −λs. Therefore Λ contains the vectors
(λs, λ, λ) + (λ, λs,−λ) = −(λs, λs, 0), that is, all vectors (2β, 2β, 0) with β
a root in B. Hence Λ also contains

(λ(1 + i0), λ(1 + i0), 0) + (λ(1− i0),−λ(1 + i0), 0) = (2λ, 0, 0).

Applying the above symmetries it follows at once that Λ contains the
following 196560 vectors of norm 4, where λ is a root of L and j, k ∈ J =
{±it | t ∈ PL(7)}:

(2λ, 0, 0) Number: 3× 240 = 720
(λs,±(λs)j, 0) Number: 3× 240× 16 = 11520
((λs)j,±λk,±(λj)k) Number: 3× 240× 16× 16 = 184320
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4 Identification with the real Leech lattice

We show first that the 196560 vectors listed above span Λ. For if (x, y, z) ∈ Λ,
then by adding suitable vectors of the third type, we may reduce z to 0. Then
we know that y ∈ Ls, so by adding suitable vectors of the second type we
may reduce y to 0 also. Finally we have that x ∈ Ls ∩ Ls = 2L so we can
reduce x to 0 also.

At this stage it is easy to identify Λ with the Leech lattice in a number of
different ways. First, let us label the coordinates of each brick of the MOG
(see [9] or [7]) as follows:

i1 i3

i2 i6

i4 i5

−1 i0

Then it is well-known (see for example [7]) that the map it 7→ it+1 is a
symmetry of the standard Leech lattice. Now L is spanned by 1± it and s,
and it is trivial to verify that the vectors (1 ± i0)(s, 1, 1) and s(s, 1, 1) are
in this Leech lattice. These together with coordinate permutations, sign-
changes and addition are enough to give all the minimal vectors, which span
the lattice.

An alternative approach is to show directly from our definition that Λ is
an even self-dual lattice with no vectors of norm 2, whence it is the Leech
lattice by Conway’s characterisation [5, Chapter 12]. For if (x, y, z) is in the
dual of Λ then in particular its (real) inner product with (2λ, 0, 0) is integral,
and since L is self-dual this implies x ∈ L. Similarly its inner product with
(λs, λs, 0) is integral, and since the dual of B is 2B this implies x + y ∈ Ls.
Also (λs,−λ,−λ) + (0,−λs,−λs) = (λs, λs, λs) ∈ Λ and the dual of Ls is
2Ls, so x + y + z ∈ Ls. Thus Λ contains its dual.

Conversely, if (x, y, z) ∈ Λ then

2N(x, y, z) = N(x + y) + N(x + z) + N(y + z)−N(x + y + z)

and all the terms on the right hand side are divisible by 4, so Λ is an even
lattice, and in particular is contained in its own dual. That Λ has no vectors
of norm 2 is easy to see: if (x, y, z) ∈ Λ has norm 2 then at least one
coordinate is 0, so the other coordinates lie in Ls; therefore there is only one
non-zero coordinate, which lies in 2L, so the vector has norm at least 4.
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5 Applications

The above construction is deceptively simple. In fact, however, finding the
correct definition was not at all easy. Over the years, many people have
noticed the suggestive fact that

196560 = 3× 240× (1 + 16 + 16× 16),

and tried to build the Leech lattice from triples of integral octonions (see
for example [10, 11, 12]), but until now no-one has provided a convincing
explanation for this numerology.

An alternative definition of an octonion Leech lattice using the ‘natural’
norm N(x, y, z) = xx + yy + zz may be obtained by a change of basis:

1. x, y, z ∈ B;

2. x + y, y + z ∈ Bs = L;

3. x + y + z ∈ Bs.

In a further paper [19] I shall show how to generate the automorphism
group of the lattice in terms of 3 × 3 matrices with octonion entries, and
give nice descriptions of many of its maximal subgroups. This will include
elementary constructions of all the Suzuki-chain subgroups, which up till now
have not been easy to describe directly in terms of the lattice.
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