## Octonions and the Leech lattice Robert A. Wilson School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS 18th December 2008 #### Abstract We give a new, elementary, description of the Leech lattice in terms of octonions, thereby providing the first real explanation of the fact that the number of minimal vectors, 196560, can be expressed in the form $3 \times 240 \times (1+16+16\times 16)$ . We also give an easy proof that it is an even self-dual lattice. ### 1 Introduction The Leech lattice occupies a special place in mathematics. It is the unique 24-dimensional even self-dual lattice with no vectors of norm 2, and defines the unique densest lattice packing of spheres in 24 dimensions. Its automorphism group is very large, and is the double cover of Conway's group $Co_1$ [2], one of the most important of the 26 sporadic simple groups. This group plays a crucial role in the construction of the Monster [13, 4], which is the largest of the sporadic simple groups, and has connections with modular forms (so-called 'Monstrous Moonshine') and many other areas, including theoretical physics. The book by Conway and Sloane [5] is a good introduction to this lattice and its many applications. It is not surprising therefore that there is a huge literature on the Leech lattice, not just within mathematics but in the physics literature too. Many attempts have been made in particular to find simplified constructions (see for example the 23 constructions described in [3] and the four constructions described in [15]). In the latter are described a 12-dimensional complex Leech lattice, whose symmetry group is a sextuple cover of the sporadic Suzuki group [16]; a 6-dimensional quaternionic Leech lattice [17], whose symmetry group is a double cover of an exceptional group of Lie type, namely $G_2(4)$ ; and a 3-dimensional quaternionic version, known as the icosian Leech lattice [14, 1], which exhibits the double of cover of the Hall–Janko group as a group generated by quaternionic reflections. This last is based on the ring of icosians discovered by Hamilton, which is an algebraic version of the $H_4$ reflection group. In this paper I show how to construct a 3-dimensional *octonionic* Leech lattice, based on the Coxeter–Dickson non-associative ring of integral octonions [8], which is an algebraic version of the E<sub>8</sub> lattice. # 2 Octonions and $E_8$ The book by Conway and Smith [6] gives much useful background on octonions. The (real) octonion algebra is an 8-dimensional (non-associative) algebra with an orthonormal basis $\{1 = i_{\infty}, i_0, \dots, i_6\}$ labeled by the projective line $PL(7) = \{\infty\} \cup \mathbb{F}_7$ , with product given by $i_0i_1 = -i_1i_0 = i_3$ and images under the subscript permutations $t \mapsto t + 1$ and $t \mapsto 2t$ . The norm is $N(x) = x\overline{x}$ , where $\overline{x}$ denotes the octonion conjugate of x, and satisfies N(xy) = N(x)N(y). The $E_8$ root system embeds in this algebra in various interesting ways. For example, we may take the 240 roots to be the 112 octonions $\pm i_t \pm i_u$ for any distinct $t, u \in PL(7)$ , and the 128 octonions $\frac{1}{2}(\pm 1 \pm i_0 \pm \cdots \pm i_6)$ which have an odd number of minus signs. Denote by L the lattice spanned by these 240 octonions, and write R for $\overline{L}$ . Let $s = \frac{1}{2}(-1 + i_0 + \cdots + i_6)$ , so that $s \in L$ and $\overline{s} \in R$ . It is well-known that $\frac{1}{2}(1+i_0)L = \frac{1}{2}R(1+i_0)$ is closed under multiplication, and forms a copy of the Coxeter-Dickson integral octonions. Denote this non-associative ring by A, so that $L = (1+i_0)A$ and $R = A(1+i_0)$ . It follows immediately from the Moufang law (xy)(zx) = x(yz)x that $LR = (1+i_0)A(1+i_0)$ . Writing $B = \frac{1}{2}(1+i_0)A(1+i_0)$ , we have LR = 2B, and the other two Moufang laws imply that BL = L and RB = R. Since $\overline{s} \in R$ we have $L\overline{s} \subseteq LR = 2B$ , but 2B is spanned by its 240 roots, all of which lie in $L\overline{s}$ , so $L\overline{s} = 2B$ . Indeed, the same argument shows that if $\rho$ is any root in R then $L\rho = 2B$ . More explicitly, it is easy to show (and presumably well-known) that the roots of B are $\pm i_t$ for $t \in PL(7)$ together with $\frac{1}{2}(\pm 1 \pm i_t \pm i_{t+1} \pm i_{t+3})$ and $\frac{1}{2}(\pm i_{t+2} \pm i_{t+4} \pm i_{t+5} \pm i_{t+6})$ for $t \in \mathbb{F}_7$ . Hence $2L \subset 2B \subset L$ , that is $2L \subset L\overline{s} \subset L$ , from which we deduce also $2L \subset Ls \subset L$ . Moreover, $L\overline{s} + Ls = L$ , so by self-duality of L we have $L\overline{s} \cap Ls = 2L$ . #### 3 The octonion Leech lattice Using L as our basic copy of $E_8$ in the octonions, we define the *octonionic* Leech lattice $\Lambda = \Lambda_{\mathbb{O}}$ as the set of triples (x, y, z) of octonions, with norm $N(x, y, z) = \frac{1}{2}(x\overline{x} + y\overline{y} + z\overline{z})$ , such that - 1. $x, y, z \in L$ ; - 2. $x + y, x + z, y + z \in L\overline{s}$ ; - 3. $x + y + z \in Ls$ . It is clear that the definition of $\Lambda$ is invariant under permutations of the three coordinates. We show now that it is invariant under the map $r_t$ : $(x,y,z)\mapsto (x,yi_t,zi_t)$ which right-multiplies two coordinates by $i_t$ . Certainly $Li_t=L$ , so the first condition of the definition is preserved. Then $y(1-i_t)\in LR=2B=L\overline{s}$ , so the second condition is preserved. Finally $(y+z)(1-i_t)\in 2BL=2L\subset Ls$ , so the third condition is preserved also. It follows that the definition is invariant under sign-changes of any of the three coordinates. Suppose that $\lambda$ is any root in L. Then the vector $(\lambda s, \lambda, -\lambda)$ lies in $\Lambda$ , since $Ls \subseteq L$ and $\lambda s + \lambda = \lambda(s+1) = -\lambda \overline{s}$ . Therefore $\Lambda$ contains the vectors $(\lambda s, \lambda, \lambda) + (\lambda, \lambda s, -\lambda) = -(\lambda \overline{s}, \lambda \overline{s}, 0)$ , that is, all vectors $(2\beta, 2\beta, 0)$ with $\beta$ a root in B. Hence $\Lambda$ also contains $$(\lambda(1+i_0), \lambda(1+i_0), 0) + (\lambda(1-i_0), -\lambda(1+i_0), 0) = (2\lambda, 0, 0).$$ Applying the above symmetries it follows at once that $\Lambda$ contains the following 196560 vectors of norm 4, where $\lambda$ is a root of L and $j, k \in J = \{\pm i_t \mid t \in PL(7)\}$ : $$(2\lambda, 0, 0)$$ Number: $3 \times 240 =$ 720 $(\lambda \bar{s}, \pm (\lambda \bar{s})j, 0)$ Number: $3 \times 240 \times 16 =$ 11520 $((\lambda s)j, \pm \lambda k, \pm (\lambda j)k)$ Number: $3 \times 240 \times 16 \times 16 =$ 184320 #### 4 Identification with the real Leech lattice We show first that the 196560 vectors listed above span $\Lambda$ . For if $(x, y, z) \in \Lambda$ , then by adding suitable vectors of the third type, we may reduce z to 0. Then we know that $y \in L\overline{s}$ , so by adding suitable vectors of the second type we may reduce y to 0 also. Finally we have that $x \in L\overline{s} \cap Ls = 2L$ so we can reduce x to 0 also. At this stage it is easy to identify $\Lambda$ with the Leech lattice in a number of different ways. First, let us label the coordinates of each brick of the MOG (see [9] or [7]) as follows: $$\begin{bmatrix} -1 & i_0 \\ i_4 & i_5 \\ i_2 & i_6 \\ i_1 & i_3 \end{bmatrix}$$ Then it is well-known (see for example [7]) that the map $i_t \mapsto i_{t+1}$ is a symmetry of the standard Leech lattice. Now L is spanned by $1 \pm i_t$ and s, and it is trivial to verify that the vectors $(1 \pm i_0)(s, 1, 1)$ and s(s, 1, 1) are in this Leech lattice. These together with coordinate permutations, sign-changes and addition are enough to give all the minimal vectors, which span the lattice. An alternative approach is to show directly from our definition that $\Lambda$ is an even self-dual lattice with no vectors of norm 2, whence it is the Leech lattice by Conway's characterisation [5, Chapter 12]. For if (x, y, z) is in the dual of $\Lambda$ then in particular its (real) inner product with $(2\lambda, 0, 0)$ is integral, and since L is self-dual this implies $x \in L$ . Similarly its inner product with $(\lambda \overline{s}, \lambda \overline{s}, 0)$ is integral, and since the dual of B is 2B this implies $x + y \in L\overline{s}$ . Also $(\lambda s, -\lambda, -\lambda) + (0, -\lambda \overline{s}, -\lambda \overline{s}) = (\lambda s, \lambda s, \lambda s) \in \Lambda$ and the dual of Ls is 2Ls, so $x + y + z \in Ls$ . Thus $\Lambda$ contains its dual. Conversely, if $(x, y, z) \in \Lambda$ then $$2N(x, y, z) = N(x + y) + N(x + z) + N(y + z) - N(x + y + z)$$ and all the terms on the right hand side are divisible by 4, so $\Lambda$ is an even lattice, and in particular is contained in its own dual. That $\Lambda$ has no vectors of norm 2 is easy to see: if $(x, y, z) \in \Lambda$ has norm 2 then at least one coordinate is 0, so the other coordinates lie in $L\overline{s}$ ; therefore there is only one non-zero coordinate, which lies in 2L, so the vector has norm at least 4. # 5 Applications The above construction is deceptively simple. In fact, however, finding the correct definition was not at all easy. Over the years, many people have noticed the suggestive fact that $$196560 = 3 \times 240 \times (1 + 16 + 16 \times 16),$$ and tried to build the Leech lattice from triples of integral octonions (see for example [10, 11, 12]), but until now no-one has provided a convincing explanation for this numerology. An alternative definition of an octonion Leech lattice using the 'natural' norm $N(x, y, z) = x\overline{x} + y\overline{y} + z\overline{z}$ may be obtained by a change of basis: - 1. $x, y, z \in B$ ; - 2. $x + y, y + z \in Bs = L$ ; - 3. $x + y + z \in B\overline{s}$ . In a further paper [19] I shall show how to generate the automorphism group of the lattice in terms of $3 \times 3$ matrices with octonion entries, and give nice descriptions of many of its maximal subgroups. This will include elementary constructions of all the Suzuki-chain subgroups, which up till now have not been easy to describe directly in terms of the lattice. #### References - [1] A. M. Cohen, Finite quaternionic reflection groups, *J. Algebra* **64** (1980), 293–324. - J. H. Conway, A group of order 8,315,553,613,086,720,000, Bull. London Math. Soc. 1 (1969), 79–88. - [3] J. H. Conway and N. J. A. Sloane, 23 constructions for the Leech lattice, *Proc. Roy. Soc. London Ser. A* **381** (1982), 275–283. - [4] J. H. Conway, A simple construction for the Fischer–Griess monster group. *Invent. Math.* **79** (1985), 513–540. - [5] J. H. Conway and N. J. A. Sloane, *Sphere packings, lattices and groups*, 3rd ed., Springer (1999). - [6] J. H. Conway and D. A. Smith, On quaternions and octonions: their geometry, arithmetic and symmetry, A. K. Peters (2003). - [7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *An Atlas of Finite Groups*, Clarendon Press, Oxford, 1985. - [8] H. S. M. Coxeter, Integral Cayley numbers, Duke Math. J. 13 (1946), 567–578. - [9] R. T. Curtis, A new combinatorial approach to $M_{24}$ , Math. Proc. Cambridge Philos. Soc. **79** (1976), 25–42. - [10] G. M. Dixon, Octonions: invariant representation of the Leech lattice, arXiv:hep-th/9504040v1, 7 Apr 1995. - [11] G. M. Dixon, Octonions: invariant Leech lattice exposed, arXiv:hep-th/9506080v1, 12 Jun 1995. - [12] N. Elkies and B. Gross, The exceptional cone and the Leech lattice, *Internat. Mat. Res. Notices* (1996), 665–698. - [13] R. L. Griess, Jr., The friendly giant, *Invent. Math.* **69** (1982), 1–102. - [14] J. Tits, Quaternions over $\mathbb{Q}(\sqrt{5})$ , Leech's lattice and the sporadic group of Hall–Janko, J. Algebra **63** (1980), 56–75. - [15] J. Tits, Four presentations of Leech's lattice, in *Finite Simple Groups II*, (M. J. Collins, ed.), pp. 303–307. Academic Press, 1980. - [16] R. A. Wilson, The complex Leech lattice and maximal subgroups of the Suzuki group, *J. Algebra* **84** (1983), 151–188. - [17] R. A. Wilson, The quaternionic lattice for $2G_2(4)$ and its maximal subgroups J. Algebra 77 (1982), 449–466. - [18] R. A. Wilson, The maximal subgroups of Conway's group $Co_1$ , J. Algebra 85 (1983), 144–165. - [19] R. A. Wilson, Octonions and Conway's group, in preparation.