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Abstract

We give a description of the double cover of Conway’s group in terms
of right multiplications by 3× 3 matrices over the octonions. This leads to
simple sets of generators for many of the maximal subgroups, including a
uniform construction of the Suzuki chain of subgroups.

1 Introduction

In [12] I showed how to construct a 3-dimensional octonionic Leech lattice, based
on Coxeter’s non-associative ring of integral octonions [5], which is an algebraic
version of the E8 lattice. The automorphism group of the Leech lattice is Con-
way’s group Co0, which is a double cover of the sporadic simple group Co1 (see
[2]). In this paper I show how to write generators for Co0, and many of its
maximal subgroups, in terms of 3× 3 octonion matrices (suitably interpreted).

We begin by summarising the notation and results of [12]. The octonions are
an 8-dimensional real vector space, with basis {it : t ∈ PL(7)}, where PL(7) =
{∞}∪F7 is the projective line of order 7, such that i∞ = 1 and the multiplication
is given by the images under the subscript permutations t 7→ t + 1 and t 7→ 2t
of i0i1 = −i1i0 = i3. The lattice L is defined to be the copy of E8 whose roots
are ±it ± iu for t 6= u and 1

2

∑
t(±it) with an odd number of minus signs. Let

s = 1
2
(−1 + i0 + · · ·+ i6) and R = L.

Writing B = 1
2
LR we proved in [12] that B is a copy of the E8 lattice whose

roots are ±it and the images under t 7→ t + 1 of 1
2
(±1± i0± i1± i3) and 1

2
(±i2±

i4 ± i5 ± i6). Thus Coxeter’s non-associative ring of integral octonions (see [5]
and [3]) is 1

2
(1 + i0)B(1 + i0), which is closed under multiplication. Moreover,

using the Moufang laws we showed that Ls = 2B and BL = L. The important
content of [12] is the following definition.
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Definition 1 The octonionic Leech lattice Λ = ΛO is the set of triples (x, y, z)
of octonions, with the norm N(x, y, z) = 1

2
(xx + yy + zz), such that

(i) x, y, z ∈ L,

(ii) x + y, x + z, y + z ∈ Ls, and

(iii) x + y + z ∈ Ls.

The main result of [12] is that Λ is isometric to the Leech lattice.

2 The monomial subgroup

The reflection in any vector r of norm 1 in the octonions can be expressed as the
map

x 7→ −rxr.

In particular, since 1 + it is perpendicular to s we have s = −1
2
(1 + it)s(1 + it).

Using Ra to denote the map x 7→ xa, the Moufang law ((xa)b)a = x(aba) can
be expressed as RaRbRa = Raba. In particular Rs = −1

2
R1+itRsR1+it , which is

equivalent to each of the following:

RsR−1+it = R1+itRs,
R−1+itRs = RsR1+it .

Combining two such relations gives

RsR1−i0R1+it = −R1+i0RsR1+it = R1+i0R1−itRs.

Therefore

(L(1− i0))(1 + it) = (LR)L = 2BL = 2L
(B(1− i0))(1 + it) = (BL)R = LR = 2B

((Ls)(1− i0))(1 + it) = ((L(1 + i0))(1− it))s = 2Ls.

These three equations imply that the map 1
2
R1−i0R1+it acting simultaneously on

all three coordinates preserves the octonion Leech lattice Λ.
Observe that the roots 1 − it for t = 0, 1, 2, 3, 4, 5, 6 form a copy of the root

system of type A7, whose Weyl group is the symmetric group S8. Now the product
of the reflections in 1− i0 and 1− it is the map

x 7→ 1

4
(1− it)((1 + i0)x(1 + i0))(1− it)

which can be expressed as 1
2
B1+i0

1
2
B1−it , where Br denotes the bi-multiplication

map x 7→ rxr. These elements act as 3-cycles (∞, 0, t), so generate the rotation
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subgroup A8 of the Weyl group. Finally we apply the triality automorphism
which takes bimultiplications Bu by units u of norm 1 to right-multiplications
Ru by the octonion conjugate u, and deduce that the maps 1

2
R1−i0R1+it generate

2.A8, the double cover of A8.
Adjoining the coordinate permutations and sign changes to this group gives

a group 2.A8 × S4. Adjoining also the symmetry r0 : (x, y, z) 7→ (x, yi0, zi0)
described in [12] gives a group of shape 23+12(A8 × S3). The latter group is in
fact a maximal subgroup of the automorphism group 2.Co1 of the Leech lattice
(see [11]), so we only need one more (non-monomial) symmetry to generate the
whole of 2.Co1.

3 A complex reflection group

In order to construct a non-monomial symmetry, we regard s as a complex num-
ber 1

2
(−1 +

√
−7) and consider the subset of the octonionic Leech lattice which

lies inside the 3-dimensional vector space over Q(s) = Q(
√
−7). This is a lat-

tice spanned over Z[s] by the vectors (±2s, 0, 0), (±2,±2, 0) and (±s2,±s,±s).
Dividing through by s we obtain a well-known lattice (see for example [4, p.
3]) which has 42 vectors of norm 4, and the 21 reflections in these vectors gen-
erate the automorphism group of the lattice, which is isomorphic to 2 × L3(2).
More explicitly, this automorphism group is generated by the monomial subgroup
23:S3

∼= 2× S4 together with the matrix

1

2

 0 s s
s −1 1
s 1 −1

 ,

which is the negative of reflection in (s, 1, 1).
Now this matrix represents the map

(x, y, z) 7→ 1

2
((y + z)s, xs− y + z, xs + y − z) (1)

on the given complex vector space. But this can also be interpreted as a map on
triples (x, y, z) of octonions. We show next that, with this interpretation, it is
also a symmetry of the octonion Leech lattice. To prove this claim, it is useful
first to prove the following lemma.

Lemma 1 (x, y, z) ∈ Λ if and only if the following three conditions hold:

(i) x ∈ L;

(ii) x + y ∈ Ls = 2B;

(iii) xs + y + z ∈ 2L.
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Proof. We use repeatedly the properties 2L ⊂ Ls ⊂ L and 2L ⊂ Ls ⊂ L.
Suppose the three conditions of the lemma hold. Then y = (x + y) − x ∈ L so
z = (xs+ y + z)− y−xs ∈ L. Also y + z = (xs+ y + z)−xs ∈ Ls, and therefore
x+z = (x+y)−(y+z)+2z ∈ Ls. Finally x+y+z = (xs+y+z)+xs+2x ∈ Ls.

Conversely if (x, y, z) satisfies the conditions of the original definition, then
xs + y + z = (x + y + z)s + (y + z)s + 2(y + z) ∈ 2L.

For convenience, write (x′, y′, z′) for the image of (x, y, z) under the octonion
map given by (1), and note that s = 1

2
(−1 +

√
−7) satisfies s2 + s + 2 = 0, so

that s + s = −1, s2 = −2− s = s− 1 and s2 = −2− s = s− 1. Now we compute

(i) x′ = 1
2
(y + z)s ∈ L;

(ii) x′ + y′ = 1
2
(xs+ y(−1+ s)+ z(1+ s)) = 1

2
(x+ ys− z)s ∈ Ls, using the fact

that Λ is invariant under coordinate permutations and sign-changes;

(iii) x′s + y′ + z′ = (y + z) + xs ∈ 2L;

and the claim is proved.
We summarise our results in the following theorem.

Theorem 1 The full automorphism group 2.Co1 of the Leech lattice is generated
by the following symmetries:

(i) an S3 of coordinate permutations;

(ii) the map r0 : (x, y, z) 7→ (x, yi0, zi0);

(iii) the maps 1
2
R1−i0R1+it for t = 1, 2, 3, 4, 5, 6;

(iv) the map (x, y, z) 7→ 1
2
((y + z)s, xs− y + z, xs + y − z).

4 The normaliser of the complex reflection group

We have described the subgroup 2.A8 generated by the maps 1
2
R1−i0R1+it as

the double cover of the group of even permutations of {∞, 0, 1, 2, 3, 4, 5, 6}. The
stabiliser of ∞ is a subgroup 2.A7 generated by the elements 1

2
Ri1−i0Rit−i0 for

t = 2, 3, 4, 5, 6. Since the roots it − i0 are perpendicular to s, we know that
(it − i0)s(it − i0) = −2s and therefore Rit−i0Rs = RsRit−i0 . It follows that this
group 2.A7 commutes with the reflection group 2 × L3(2) just described, giving
rise to a subgroup L3(2)× 2.A7.

It is well-known (see [11]) that this group has index 2 in a maximal subgroup
of shape (L3(2)× 2.A7).2. To obtain the latter group we may adjoin an element
such as 1

2
Ri0−i1R

∗
s, where

R∗
s = Rs

1

2

 s 1 1
1 s 1
1 1 s

 .
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Using the fact that Ri1−i0Rs = RsRi1−i0 we can re-write this element in various
ways such as

1

2
RsRi0−i1

1

2

 s 1 1
1 s 1
1 1 s

 =
1

2

 s 1 1
1 s 1
1 1 s

 1

2
RsRi0−i1 .

In particular, it squares to minus the identity.
We still have to show that this element is a symmetry of the octonionic Leech

lattice. Writing (x′, y′, z′) for the image of (x, y, z) under this map, we have

(i) x′ = 1
4
((xs + y + z)s)(i0 − i1) ∈ 1

4
(2Ls)L = 1

2
(LR)L = BL = L and by

symmetry also y′, z′ ∈ L;

(ii) s2 − s = s(s− 1) = ss2 = 2s and therefore x′ − y′ = 1
2
((x− y)(i0 − i1))s ∈

1
2
((LR)L)s = Ls and again by symmetry y′ − z′ ∈ Ls;

(iii) s+2 = −s2 and so x′+y′+z′ = 1
4
(((x+y+z)s)(i1−i0))s

2 ∈ 1
2
(LR)s2 = Ls.

Since, as remarked in [12], we can change signs arbitrarily in the definition, we
have shown that the given element is a symmetry of the lattice.

Finally let us consider the action of 1
2
Ri0−i1R

∗
s by conjugation on L3(2) ×

2.A7. Since the factor 2.A7 commutes with the action of any matrix over Q(s),
it follows easily that our element acts on the 2.A7 factor as the transposition
(0, 1). Similarly, Ri0−i1 acts as complex conjugation (s ↔ s) so our element
acts on the L3(2) factor as complex conjugation followed by conjugation by the

matrix

 s 1 1
1 s 1
1 1 s

. More concretely, it commutes with the S3 of coordinate

permutations and maps the sign change on the last two coordinates (that is, the
negative of reflection in (2, 0, 0)) to the negative of reflection in (s, 1, 1).

5 The Suzuki chain

The so-called Suzuki chain of subgroups of 2.Co1 is a series of subgroups of the
following shapes:

2.A9 × S3

2.A8 × S4

(2.A7 × L3(2)).2
(2.A6 × U3(3)).2
(2.A5 ◦ 2.J2).2
(2.A4 ◦ 2.G2(4)).2

6.Suz.2
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We have already described two groups in this list, namely 2.A8 × S4 and
(2.A7×L3(2)).2. To obtain 2.A9×S3, we take the S3 of coordinate permutations,
together with the group 2.A8 which is generated by 1

2
R1−i0R1+it , and extend 2.A7

to 2.S7 by adjoining the element 1
2
Ri0−i1R

∗
s as above. The map onto A9 permuting

the points {∗,∞, 0, 1, 2, 3, 4, 5, 6} is then given by mapping R1−i0R1+it onto the
3-cycle (∞, 0, t), as we have already seen, and mapping the extra element to
(∗,∞)(0, 1). In terms of the root system of L, the factor R∗

s of the new element
corresponds to the root s, and extends the root system of type A7 spanned by
1− it to one of type A8.

To obtain the remaining groups in the Suzuki chain, all we have to do is adjoin
to the complex reflection group 2×L3(2) the part of 2.A9 which commutes with
the appropriate subgroup 2.An.

Consider first the subgroup 2.A6 generated by 1
2
Ri1−i2Ri1−it for t = 3, 4, 5, 6.

This subgroup centralizes 1
2
R1−i0R

∗
s as well as the complex reflection group 2 ×

L3(2). Together these generate the full centralizer 2 × U3(3), and by adjoining
1
2
R1−i0Ri1−i2 we obtain the whole group (2.A6×U3(3)).2, which is a maximal sub-

group of 2.Co1. An alternative generating set may be obtained by observing that
the monomial subgroup of U3(3) is 42:S3 generated by r0 : (x, y, z) 7→ (x, yi0, zi0)
and the coordinate permutations. Then we need only adjoin the element (1)
to obtain U3(3). To prove that the group is indeed U3(3), first observe that all
the generating matrices are written over Q(i0, s), which is an associative ring of
quaternions. Therefore these matrices define a quaternionic representation of the
group in the usual sense, and it then suffices to reduce the representation modulo
3. Since both i0 and s − s =

√
−7 map to ±i in the field F9 = F3(i), it follows

immediately that the generators map to unitary matrices. Notice that this is
essentially the same description of the group 2 × U3(3) as Cohen’s description
of it as a quaternionic reflection group [1]. The reflecting vectors are, up to left
quaternion scalar multiplication, the 3+12+48 = 63 images under the monomial
group of the Leech lattice vectors (2s, 0, 0), (2, 2, 0) and (s2, s, s).

The next case may be obtained by taking the subgroup 2.A5 generated by
1
2
Ri2−i3Ri2−it for t = 4, 5, 6. To extend from U3(3) to 2.J2 we may adjoin

1
2
R1−i0R1+i1 , or alternatively extend the monomial subgroup from 42:S3 to 23+4:S3

by adjoining r1 : (x, y, z) 7→ (x, yi1, zi1). Then the involution centralizer 22+4A5

is generated by the diagonal symmetries, the coordinate permutation (2, 3), and
the element 1

2
R1−i0R

′
s, where

R′
s =

 s 0 0
0 1 1
0 1 −1

 .

This is reminiscent of, but rather different from, the description of 2.J2 as a
quaternionic reflection group in [1, 7, 8].

The group 2.(A4×G2(4)).2 is perhaps best described by taking the subgroup
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2.A4 generated by 1
2
Ri0−i3Ri5−i6 and 1

2
Ri3−i5Ri5−i6 . With the quaternionic la-

belling

j i

i k

k j

1 1

given in [10] of each brick of the MOG (itself originally described in [6]), these
elements become left-multiplication by k and −ω respectively. As generators for
2.G2(4) we may take those given above for L3(2), together with the monomial
elements diag(1, it, it) for t = 1, 2, 4, and the elements 1

2
R1−i1Ri2−i4 (equivalent

to right multiplication by k) and 1
2
Ri1−i2Ri2−i4 (equivalent to right multiplication

by −ω), as well as 1
2
R1−i1R

∗
s.

The last case 6.Suz is of particular interest. It may be taken as the centralizer
of the element 1

2
Ri3−i5Ri5−i6 of order 6. Then it is generated by the sign-changes

and coordinate permutations, together with the matrix of reflection in (s, 1, 1),
and 1

2
R1−i0R1+it for t = 1, 2, 4, as well as 1

2
R1−i1R

∗
s. This extends to 6.Suz:2 by

adjoining 1
2
R1−i0Ri5−i6 .

6 Some 2-local subgroups

We have already seen how to generate the maximal 2-local subgroup of Co0 which
has shape 23+12(A8 × S3), acting monomially on the three octonion coordinates.

The involution centraliser has the shape 21+8.W (E8)
′. If we take our involu-

tion to be r0
2 = diag(1,−1,−1), then the normal subgroup 21+8 is generated by

rt = diag(1, it, it) for all t. Modulo this, the group 2.A8 together with diag(it, it, 1)
generate a maximal subgroup of W (E8)

′, which may be extended to the whole
group by adjoining an element such as 1

2
R1−i0R

′
s, where R′

s is as defined above.
Another maximal 2-local subgroup of Co0 is 212M24. This intersects our

monomial group 23+12(A8 × S3) in a group

212.26(S3 × L3(2)) ∼= 23+12.(23L3(2)× S3).

To make the latter group, take the normal subgroup 23+12S3 generated by the
coordinate permutations and all rt, and the subgroup of 2A8 generated by

1

8
R1−i2Ri3−i5Ri4−i1Ri6−i0R1−i1Ri2−i4

and its images under it 7→ it+1. Now let π be the coordinate permutation (1, 2),
and adjoin the element

r
πR1−i1

R′
s/2

1 =
1

4
R1−i1R

′
sdiag(i1, 1, i1)R1−i1R

′
s.

7



A little calculation shows that this element lies in the subgroup 212M24 which
acts monomially on the MOG described above, but does not lie in 23+12(A8×S3).
Hence we have obtained generators for 212M24.

A similar process gives generators for the other 2-constrained maximal 2-
local subgroup 25+12(S3 × 3S6). In this case we adjoin the above element to
the subgroup 23+12((A4 × A4).2 × S3) obtained by restricting to the subgroup
of 2.A8 generated by 1

2
R1−i1R1+i2 ,

1
2
R1−i1R1+i4 ,

1
2
Ri0−i3Ri0−i6 ,

1
2
Ri0−i3Ri0−i5 and

1
4
R1−i0Ri1−i3Ri2−i6Ri4−i5 .
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