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Notes 2 Autumn 2008

2 Permutation groups

We first define thesymmetric groupSym(Ω) on a setΩ as the group of all permutations
of that set. Here apermutationis simply a bijection from the set to itself. IfΩ has
cardinalityn, then we might as well takeΩ = {1, . . . ,n}. The resulting symmetric
group is denotedSn, and calledthesymmetric group of degreen.

Since a permutationπ of Ω is determined by the imagesπ(1) (n choices),π(2)
(n− 1 choices, as it must be distinct fromπ(1)), π(3) (n− 2 choices), and so on,
we have that the number of permutations isn(n−1)(n−2) . . .2.1 = n! and therefore
|Sn|= n!.

A permutationπ may be written simply as a list of the imagesπ(1), . . . ,π(n) of
the points in order, or more explicitly, as a list of the points 1, . . . ,n with their images

π(1), . . . ,π(n) written underneath them. For example,
(

1 2 3 4 5
1 5 2 3 4

)
denotes the

permutation fixing 1, and mapping 2 to 5, 3 to 2, 4 to 3, and 5 to 4. If we draw
lines between equal numbers in the two rows, the lines cross over each other, and the
crossings indicate which pairs of numbers have to be interchanged in order to produce
this permutation. In this example, the line joining the 5s crosses the 4s, 3s and 2s in
that order, indicating that we may obtain this permutation by first swapping 5 and 4,
then 5 and 3, and finally 5 and 2.

The alternating groups A single interchange of two elements is called atranspo-
sition, so we have seen how to write any permutation as a product of transpositions.
However, there are many different ways of doing this. But if we write the identity per-
mutation as a product of transpositions, and the line connecting theis crosses over the
line connecting thejs, then they must cross back again: thus the number of crossings
for the identity element is even. If we follow one permutation by another, it is clear
that the number of transpositions required for the product is the sum of the number of
transpositions for the two original permutations. It follows that ifπ is written in two
different ways as a product of transpositions, then either the number of transpositions
is even in both cases, or it is odd in both cases. Therefore the mapφ from Sn onto the
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group{±1} of order 2 defined byφ(π) = 1 wheneverπ is the product of an even num-
ber of transpositions, is a (well-defined) group homomorphism. Asφ is onto, its kernel
is a normal subgroup of index 2, which we call thealternatinggroup of degreen. It
has order12n!, and its elements are called theevenpermutations. The other elements
of Sn are theoddpermutations.

A possibly more convincing proof that the sign of a permutation is well-defined
may be obtained by lettingSn act on the set{±1} by multiplying by

∏
i> j

iπ− jπ

i− j
,

and proving that this does define a group action, with kernelAn.
The notation for permutations as functions (whereπρ meansρ followed by π) is

unfortunately inconsistent with the normal convention for permutations thatπρ means
π followed byρ. Therefore we adopt a different notation, writingaπ instead ofπ(a),
to avoid this confusion. We then haveaπρ = ρ(π(a)), and permutations are read from
left to right, rather than right to left as for functions.

Transitivity Given a groupH of permutations, i.e. a subgroup of a symmetric group
Sn, we are interested in which points can be mapped to which other points by elements
of the groupH. If every point can be mapped to every other point, we sayH is tran-
sitiveon the setΩ. In symbols, this is expressed by saying that for alla andb in Ω,
there existsπ ∈ H with aπ = b. In any case, the set{aπ | π ∈ H} of points reachable
from a is called theorbit of H containinga. It is easy to see that the orbits ofH form
a partition of the setΩ.

More generally, if we can simultaneously mapk points wherever we like, the group
is calledk-transitive. This means that for every list ofk distinct pointsa1, . . . ,ak and
every list ofk distinct pointsb1, . . . ,bk there exists an elementπ ∈ H with aπ

i = bi for
all i. In particular, 1-transitive is the same as transitive.

For example, it is easy to see that the symmetric groupSn is k-transitive for all
k≤ n, and that the alternating groupAn is k-transitive for allk≤ n−2.

It is obvious that ifH is k-transitive thenH is (k−1)-transitive, and is thereforem-
transitive for allm≤ k. There is however a concept intermediate between 1-transitivity
and 2-transitivity which is of interest in its own right. This is the concept of primitivity,
which is best explained by defining what it is not.

Primitivity A block systemfor a subgroupH of Sn is a partition ofΩ preserved by
H; we call the elements of the partitionblocks. In other words, if two pointsa andb
are in the same block of the partition, then for all elementsπ ∈ H, the pointsaπ and
bπ are also in the same block as each other. There are two block systems which are
always preserved by every group: one is the partition consisting of the single block
Ω; at the other extreme is the partition in which every block consists of a single point.
These are called the trivial block systems. A non-trivial block system is often called a
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system of imprimitivityfor the groupH. If n≥ 3 then any group which has a system of
imprimitivity is called imprimitive, and any non-trivial group which is not imprimitive
is calledprimitive. (It is usual also to say thatS2 is primitive, but thatS1 is neither
primitive nor imprimitive.)

It is obvious that

if H is primitive, thenH is transitive. (1)

For, if H is not transitive, then the orbits ofH form a system of imprimitivity for
H, so H is not primitive. On the other hand, there exist plenty of transitive groups
which are not primitive. For example, inS4, the subgroupH of order 4 generated

by
(

1 2 3 4
2 1 4 3

)
and

(
1 2 3 4
3 4 1 2

)
is transitive, but preserves the block system

{{1,2},{3,4}}. It also preserves the block systems{{1,3},{2,4}} and{{1,4},{2,3}}.
Another important basic result about primitive groups is that

every 2-transitive group is primitive. (2)

For, if H is imprimitive, we can choose three distinct pointsa, b andc such thata
andb are in the same block, whilec is in a different block. (This is possible since the
blocks have at least two points, and there are at least two blocks.) Then there can be
no element ofH taking the pair(a,b) to the pair(a,c), so it is not 2-transitive.

Group actions Suppose thatG is a subgroup ofSn acting transitively onΩ. Let H
be the stabilizer of the pointa∈ Ω, that is,H = {g∈ G : ag = a}. Recall (the orbit–
stabilizer theorem) that the points ofΩ are in natural bijection with the (right) cosets
Hg of H in G. This bijection is given byHx↔ ax. In particular,|G : H|= n.

We can turn this construction around, so that given any subgroupH in G, we can
let G act on the right cosets ofH according to the rule(Hx)g = Hxg. Numbering the
cosets ofH from 1 to n, wheren = |G : H|, we obtain a permutation action ofG on
thesen points, or in other words a group homomorphism fromG to Sn.

Maximal subgroups This correspondence between transitive group actions on the
one hand, and subgroups on the other, permits many useful translations between com-
binatorial properties ofΩ and properties of the groupG. For example, a primitive
group action corresponds to a maximal subgroup, where a subgroupH of G is called
maximalif there is no subgroupK with H < K < G. More precisely:

PROPOSITION1. Suppose that the group G acts transitively on the setΩ, and let H
be the stabilizer of a∈ Ω. Then G acts primitively onΩ if and only if H is a maximal
subgroup of G.

Proof. We prove both directions of this in the contrapositive form. First assume that
H is not maximal, and choose a subgroupK with H < K < G. Then the points ofΩ
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are in bijection with the (right) cosets ofH in G. Now the cosets ofK in G are unions
of H-cosets, so correspond to sets of points, each set containing|K : H| points. But
the action ofG preserves the set ofK-cosets, so the corresponding sets of points form
a system of imprimitivity forG on Ω.

Conversely, suppose thatG acts imprimitively, and letΩ1 be the block containing
a in a system of imprimitivity. SinceG is transitive, it follows that the stabilizer ofΩ1

acts transitively onΩ1, but not onΩ. Therefore this stabilizer strictly containsH and
is a proper subgroup ofG, soH is not maximal. �

For example, considerSn acting on the setΩ = {{1,2}, . . . ,{n−1,n}} of n(n−
1)/2 unordered pairs fromn points. The stabilizerH of {1,2} is S2×Sn−2, and pro-
videdn > 4 this subgroup is maximal: ifg 6∈H, then there are pointsi, j > 2 such that
ig ∈ {1,2} but jg is not. Then the transposition(ig, jg) is in the subgroup generated by
H andg, and therefore so are all the transpositions. It follows thatSn acts primitively
on the givenn(n−1)/2 objects.

Wreath products The concept of imprimitivity leads naturally to the idea of awreath
productof two permutation groups. Recall thedirect product

G×H = {(g,h) : g∈G,h∈ H} (3)

with identity element 1G×H = (1G,1H) and group operations

(g1,h1)(g2,h2) = (g1,g2,h1h2)
(g,h)−1 = (g−1,h−1). (4)

Recall also thesemidirect product G:H or G:φH, whereφ : H → Aut(G) describes an
action of H on G. We defineG:H = {(g,h) : g ∈ G,h ∈ H} with identity element
1G:H = (1G,1H) and group operations

(g1,h1)(g2,h2) = (g1g
φ(h−1

1 )
2 ,h1h2)

(g,h)−1 = ((g−1)φ(h),h−1). (5)

Now suppose thatH is a permutation group acting onΩ = {1, . . . ,n}. Define
Gn = G×G× ·· ·×G = {(g1, . . . ,gn) : gi ∈ G}, the direct product ofn copies ofG,
and letH act onGn by permuting then subscripts. That isφ : H → Aut(Gn) is defined
by

φ(π) : (g1, . . . ,gn) 7→ (g
1π−1 , . . . ,gnπ−1). (6)

Then thewreath product GoH is defined to beGn:φH. For example, ifH ∼= Sn and
G∼= Sm then the wreath productSm oSn can be formed by takingn copies ofSm, each
acting on one of the setsΩ1, . . . , Ωn of sizem, and then permuting the subscripts 1,
. . . , n by elements ofH. This gives an imprimitive action ofSm oSn on Ω =

Sn
i=1Ωi ,

preserving the partition ofΩ into theΩi . More generally, any (transitive) imprimitive
group can be embedded in a wreath product: if the blocks of imprimitivity forG are
Ω1, . . . ,Ωk, thenG is a subgroup of Sym(Ω1) oSk.
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Iwasawa’s Lemma and simplicity The key to proving simplicity of many of the
finite simple groups is Iwasawa’s Lemma:

THEOREM 2. If G is a finite perfect group, acting faithfully and primitively on a set
Ω, such that the point stabilizer H has a normal abelian subgroup A whose conjugates
generate G, then G is simple.

Proof. For otherwise, there is a normal subgroupK with 1 < K < G, which does
not fix all the points ofΩ, so we may choose a point stabilizerH with K 6≤ H, and
thereforeG = HK sinceH is a maximal subgroup ofG. So anyg ∈ G can be writ-
ten g = hk with h ∈ H andk ∈ K, and therefore every conjugate ofA is of the form
g−1Ag= k−1h−1Ahk= k−1Ak≤AK. ThereforeG= AK andG/K = AK/K ∼= A/A∩K
is abelian, contradicting the assumption thatG is perfect. �

To see this in action, let us prove thatAn is simple whenevern ≥ 5. Let Ω be
the set of unordered triples (i.e. subsets of size 3) from the set{1,2, . . . ,n}. The
stabilizer of one of these triples isAn∩ (S3×Sn−3), which has a normal subgroup of
order 3, cyclically permuting the three points in the triple. These 3-cycles generate
the alternating group. Also, providedn≥ 5, they are commutators, since(a,b,c) =
(a,b)(d,e)(a,c)(d,e) = [(ac)(de),(bc)(de)]. Finally, we need to show that the action
of An onΩ is primitive. We can prove this by showing by brute force that the stabilizer
of a triple is maximal. (Actually it isn’t maximal ifn = 6, so we need a different proof
in this case.) Then apply Iwasawa’s Lemma.

More on automorphisms More generally, ifGEH, then each element ofH induces
an automorphism ofG, by conjugation inH. Thus for example ifn≥ 4 thenSn is
(isomorphic to) a subgroup of Aut(An). It turns out that forn≥ 7 it is actually the
whole of Aut(An). We shall not prove this here.

Observe that, since(a,b,c)(a,b,d) = (a,d)(b,c), the groupAn is generated by its
3-cycles. Indeed, it is generated by the 3-cycles(1,2,3), (1,2,4), . . . , (1,2,n). Also
note that forn≥ 5, An has no subgroup of indexk less thann—for if it did there would
be a homomorphism fromAn onto a transitive subgroup ofAk, contradicting the fact
thatAn is simple.

The outer automorphism ofS6 Of all the symmetric groups,S6 is perhaps the most
remarkable. One manifestation of this is its exceptional outer automorphism. This is
an isomorphism fromS6 to itself which does not correspond to a permutation of the
underlying set of six points. What this means is that there is a completely different
way forS6 to act on six points.

To construct a non-inner automorphismφ of S6 we first note thatφ must map the
point stabilizerS5 to another subgroupH ∼= S5. However,H does not fix one of the six
points on whichS6 acts. ThereforeH is transitive on these six points.
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So our first job is to construct a transitive action ofS5 on six points. This may
be obtained in a natural way as the action ofS5 by conjugation on its six Sylow 5-
subgroups. (If we wish to avoid using Sylow’s theorems at this point we can simply
observe that the 24 elements of order 5 belong to six cyclic subgroups〈(1,2,x,y,z)〉,
and that these are permuted transitively by conjugation by elements ofS5.)

Going back toS6, we have now constructed our transitive subgroupH of index 6.
ThusS6 acts naturally (and transitively) on the six cosetsHg by right multiplication.
More explicitly, we have a group homomorphismφ : S6 → Sym({Hg : g∈ S6})∼= S6.
The kernel ofφ is trivial, sinceS6 has no non-trivial normal subgroups of index 6 or
more. Henceφ is a group isomorphism, i.e. an automorphism ofS6.

But φ is not an inner automorphism, because it maps the transitive subgroupH to
the stabilizer of the trivial cosetH, whereas inner automorphisms preserve transitivity.
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