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2 Permutation groups

We first define theymmetric grousym(Q) on a sefd as the group of all permutations
of that set. Here @ermutationis simply a bijection from the set to itself. @ has
cardinality n, then we might as well tak® = {1,...,n}. The resulting symmetric
group is denote&,, and calledhe symmetric group of degre®

Since a permutatiom of Q is determined by the image¥1) (n choices),(2)
(n—1 choices, as it must be distinct from{1)), 1(3) (n— 2 choices), and so on,
we have that the number of permutationsifsa — 1)(n—2)...2.1 = n! and therefore
Sl =n.

A permutationtt may be written simply as a list of the imagaél), ..., (n) of

the points in order, or more explicitly, as a list of the points. 1 n with their images

T(1),...,7(n) written underneath them. Forexamp(e% é g g’ 4 denotes the

permutation fixing 1, and mapping 2to 5, 3t0 2, 4to 3, and 5 to 4. If we draw
lines between equal numbers in the two rows, the lines cross over each other, and the
crossings indicate which pairs of numbers have to be interchanged in order to produce
this permutation. In this example, the line joining the 5s crosses the 4s, 3s and 2s in
that order, indicating that we may obtain this permutation by first swapping 5 and 4,
then 5 and 3, and finally 5 and 2.

The alternating groups A single interchange of two elements is callettanspo-

sition, so we have seen how to write any permutation as a product of transpositions.
However, there are many different ways of doing this. But if we write the identity per-
mutation as a product of transpositions, and the line connecting tresses over the

line connecting thgs, then they must cross back again: thus the number of crossings
for the identity element is even. If we follow one permutation by another, it is clear
that the number of transpositions required for the product is the sum of the number of
transpositions for the two original permutations. It follows that i written in two
different ways as a product of transpositions, then either the number of transpositions
is even in both cases, or itis odd in both cases. Therefore thepfram S, onto the



group{+1} of order 2 defined by(m) = 1 whenevertis the product of an even num-
ber of transpositions, is a (well-defined) group homomorphismp konto, its kernel
is a normal subgroup of index 2, which we call thisernatinggroup of degree. It
has order%n!, and its elements are called teeenpermutations. The other elements
of §, are theodd permutations.

A possibly more convincing proof that the sign of a permutation is well-defined
may be obtained by letting, act on the sef+1} by multiplying by

in_jn

I>] =1 7
and proving that this does define a group action, with kefqel
The notation for permutations as functions (whapemeansp followed by 1) is
unfortunately inconsistent with the normal convention for permutationsghateans
Tt followed by p. Therefore we adopt a different notation, writia§instead ofri(a),
to avoid this confusion. We then hae& = p(m(a)), and permutations are read from
left to right, rather than right to left as for functions.

Transitivity  Given a grougH of permutations, i.e. a subgroup of a symmetric group
Sy, we are interested in which points can be mapped to which other points by elements
of the groupH. If every point can be mapped to every other point, welddg tran-

sitive on the seQ. In symbols, this is expressed by saying that foraadindb in Q,

there existate H with a™ = b. In any case, the s¢f™ | t€ H} of points reachable

from ais called theorbit of H containinga. It is easy to see that the orbits ldfform

a partition of the se®.

More generally, if we can simultaneously miapoints wherever we like, the group
is calledk-transitive This means that for every list &fdistinct pointsay,...,ax and
every list ofk distinct pointsby, ..., by there exists an elemente H with & = by for
alli. In particular, 1-transitive is the same as transitive.

For example, it is easy to see that the symmetric gr&us k-transitive for all
k < n, and that the alternating grody is k-transitive for allk < n— 2.

It is obvious that ifH is k-transitive therH is (k— 1)-transitive, and is therefome-
transitive for allm< k. There is however a concept intermediate between 1-transitivity
and 2-transitivity which is of interest in its own right. This is the concept of primitivity,
which is best explained by defining what it is not.

Primitivity A block systenfior a subgrougH of S, is a partition ofQ preserved by

H; we call the elements of the partitiditocks In other words, if two pointa andb

are in the same block of the partition, then for all elementsH, the pointsa™ and

b™ are also in the same block as each other. There are two block systems which are
always preserved by every group: one is the partition consisting of the single block
Q; at the other extreme is the partition in which every block consists of a single point.
These are called the trivial block systems. A non-trivial block system is often called a
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system of imprimitivityor the groupH. If n > 3 then any group which has a system of
imprimitivity is calledimprimitive, and any non-trivial group which is not imprimitive
is calledprimitive. (It is usual also to say th& is primitive, but thatS; is neither
primitive nor imprimitive.)

It is obvious that

if H is primitive, thenH is transitive. (1)

For, if H is not transitive, then the orbits ¢ form a system of imprimitivity for
H, soH is not primitive. On the other hand, there exist plenty of transitive groups
which are not primitive. For example, i8;, the subgrougH of order 4 generated
1 2 3 4 1 2 3 4
Wiy 1 4 333 4 1 2
{{1,2},{3,4}}. Italso preserves the block systefd4,3},{2,4} } and{{1,4},{2,3}}.
Another important basic result about primitive groups is that

is transitive, but preserves the block system

every 2-transitive group is primitive. (2)

For, if H is imprimitive, we can choose three distinct poiatsb andc such thata

andb are in the same block, whikeis in a different block. (This is possible since the
blocks have at least two points, and there are at least two blocks.) Then there can be
no element oH taking the pair(a,b) to the pair(a,c), so it is not 2-transitive.

Group actions Suppose thab is a subgroup 0§, acting transitively orQQ. LetH

be the stabilizer of the poirgt € Q, thatis,H = {g € G: a = a}. Recall (the orbit—
stabilizer theorem) that the points @fare in natural bijection with the (right) cosets
Hg of H in G. This bijection is given byHx < &*. In particular,|G: H| = n.

We can turn this construction around, so that given any subgtoumpG, we can
let G act on the right cosets ¢f according to the rul¢Hx)® = Hxg. Numbering the
cosets oH from 1 ton, wheren = |G : H|, we obtain a permutation action &f on
thesen points, or in other words a group homomorphism frGito S,.

Maximal subgroups This correspondence between transitive group actions on the
one hand, and subgroups on the other, permits many useful translations between com-
binatorial properties of2 and properties of the group. For example, a primitive

group action corresponds to a maximal subgroup, where a subgrais is called
maximalif there is no subgrouf with H < K < G. More precisely:

PrROPOSITIONL. Suppose that the group G acts transitively on the(seand let H
be the stabilizer of & Q. Then G acts primitively o if and only if H is a maximal
subgroup of G.

Proof. We prove both directions of this in the contrapositive form. First assume that
H is not maximal, and choose a subgrdapvith H < K < G. Then the points 0
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are in bijection with the (right) cosets &f in G. Now the cosets df in G are unions

of H-cosets, so correspond to sets of points, each set contakiing| points. But
the action ofG preserves the set #f-cosets, so the corresponding sets of points form
a system of imprimitivity forG on Q.

Conversely, suppose th&tacts imprimitively, and lef2; be the block containing
ain a system of imprimitivity. Sinc& is transitive, it follows that the stabilizer 611
acts transitively o214, but not onQ. Therefore this stabilizer strictly contaikband
is a proper subgroup @, soH is not maximal. O

For example, conside®, acting on the se®@ = {{1,2},...,{n—1,n}} of n(n—
1)/2 unordered pairs from points. The stabilizeH of {1,2} is S x S,_2, and pro-
videdn > 4 this subgroup is maximal: g ¢ H, then there are poinisj > 2 such that
i9 € {1,2} but j9is not. Then the transpositidi?, j9) is in the subgroup generated by
H andg, and therefore so are all the transpositions. It follows 8yadcts primitively
on the givem(n— 1)/2 objects.

Wreath products The concept of imprimitivity leads naturally to the idea avi@ath
productof two permutation groups. Recall thgect product

GxH = {(g,h):geGheH} (3)
with identity element .+ = (1g,1n) and group operations

(01,M)(g2,h2) = (91,92,h1h2)
(g™ = (ghh ). (4)

Recall also thesemidirect product @1 or G.¢H, where@: H — Aut(G) describes an
action ofH on G. We defineG:H = {(g,h) : g € G,h € H} with identity element
1c:H = (1g,1n) and group operations

1
(91,h) (g2, ) = (9192“‘1 ),hlhz)

(97 h)_l = ((g_l)(p(h)7h_1)' (5)

Now suppose thaH is a permutation group acting d2 = {1,...,n}. Define
G"=GxGx---xG={(g1,.--,0n) : G € G}, the direct product of copies ofG,
and letH act onG" by permuting then subscripts. That i§: H — Aut(G") is defined

by
®m : (91,---,0n) = (Ipets-- s Q) (6)

Then thewreath product GH is defined to be&G":¢H. For example, iH = S, and

G = Sy, then the wreath produ&y S, can be formed by taking copies ofSy, each
acting on one of the sef@, ..., Q, of sizem, and then permuting the subscripts 1,
...,n by elements of. This gives an imprimitive action @n1S, onQ = ; Q;,
preserving the partition d@ into theQ;. More generally, any (transitive) imprimitive
group can be embedded in a wreath product: if the blocks of imprimitivitySfare
Q1, ...,Q, thenG is a subgroup of Syif21) .
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lIwasawa’'s Lemma and simplicity The key to proving simplicity of many of the
finite simple groups is Iwasawa’s Lemma:

THEOREM 2. If G is a finite perfect group, acting faithfully and primitively on a set
Q, such that the point stabilizer H has a normal abelian subgroup A whose conjugates
generate G, then G is simple.

Proof. For otherwise, there is a normal subgrokipwith 1 < K < G, which does
not fix all the points ofQ, so we may choose a point stabilizérwith K £ H, and
thereforeG = HK sinceH is a maximal subgroup d&. So anyg € G can be writ-
teng = hkwith h € H andk € K, and therefore every conjugate Afis of the form
g 'Ag=k th~!Ahk=k 1Ak < AK. ThereforeG = AK andG/K = AK/K = A/ANK
is abelian, contradicting the assumption t@as perfect. O

To see this in action, let us prove that is simple wheneven > 5. Let Q be
the set of unordered triples (i.e. subsets of size 3) from thd 8& ... ,n}. The
stabilizer of one of these triples & N (S x S,—3), which has a normal subgroup of
order 3, cyclically permuting the three points in the triple. These 3-cycles generate
the alternating group. Also, provided> 5, they are commutators, sin¢e,b,c) =
(a,b)(d,e)(a,c)(d,e) = [(ac)(de), (bc)(de)]. Finally, we need to show that the action
of A, onQ is primitive. We can prove this by showing by brute force that the stabilizer
of a triple is maximal. (Actually it isn’t maximal ifh = 6, so we need a different proof
in this case.) Then apply lwasawa’s Lemma.

More on automorphisms More generally, iiG<I{H, then each element &f induces
an automorphism o6, by conjugation inH. Thus for example ih > 4 then§, is
(isomorphic to) a subgroup of A{&,). It turns out that fom > 7 it is actually the
whole of Aut(A,). We shall not prove this here.

Observe that, since,b,c)(a,b,d) = (a,d)(b,c), the groupA, is generated by its
3-cycles. Indeed, it is generated by the 3-cy¢le2,3), (1,2,4), ..., (1,2,n). Also
note that fom > 5, A, has no subgroup of indéess tham—for if it did there would
be a homomorphism fromA, onto a transitive subgroup @, contradicting the fact
thatA, is simple.

The outer automorphism of §  Of all the symmetric groupsy is perhaps the most
remarkable. One manifestation of this is its exceptional outer automorphism. This is
an isomorphism frongs to itself which does not correspond to a permutation of the
underlying set of six points. What this means is that there is a completely different
way for S to act on six points.

To construct a non-inner automorphignof S we first note thatp must map the
point stabilizerSs to another subgroud = S5. However,H does not fix one of the six
points on whichSg acts. Thereforél is transitive on these six points.



So our first job is to construct a transitive actionSfon six points. This may
be obtained in a natural way as the actionSgfoy conjugation on its six Sylow 5-
subgroups. (If we wish to avoid using Sylow’s theorems at this point we can simply
observe that the 24 elements of order 5 belong to six cyclic subgr@tga x,y, z)),
and that these are permuted transitively by conjugation by eleme8ts) of

Going back tdSs, we have now constructed our transitive subgrbupf index 6.
Thus & acts naturally (and transitively) on the six cositg by right multiplication.
More explicitly, we have a group homomorphigmS — Sym({Hg: g€ S}) = .
The kernel ofg is trivial, sinceSs has no non-trivial normal subgroups of index 6 or
more. Hencepis a group isomorphism, i.e. an automorphisnggf

But @ is not an inner automorphism, because it maps the transitive subBréooip
the stabilizer of the trivial cosét, whereas inner automorphisms preserve transitivity.



