
MTH5100 Algebraic structures I

Notes 1 Spring 2011

1 Introduction
Lecture 1

This is a course in abstract algebra. You have seen some abstract algebra already in
the first year course Introduction to Algebra. For example you have seen definitions of
structures such as rings, groups, fields. In this course we take this further, and I hope
to demonstrate the power and economy of the abstract approach.

Abstraction is introduced into mathematics not to make it hard or inaccessible, but
in order to make it useful. As E. T. Bell (a famous historian of mathematics) said
“Abstractness, sometimes hurled as a reproach at mathematics, is its chief glory, and
its surest title to practical usefulness.” Among the important uses of abstraction are

(a) Precision. Once everything is precisely defined, there can be no doubt about
what we are talking about.

(b) Generality. When it turns out that lots of apparently different things obey the
same mathematical laws, they can be studied simultaneously, thus saving a lot
of effort.

This saving of effort is behind the following remark of Matthew Pordage: “One of
the endearing things about mathematicians is the extent to which they will go to avoid
doing any real work.”

The main topic of this course is rings. I will remind you of the formal definition in
due course. To begin with, just recall the extraordinary variety of mathematical objects
which are rings:

(a) Number systems, like the real numbers R, the integers Z, the rational numbers
Q, the complex numbers C (but not the natural numbers N: why not?). The
operations which make these things into rings are the arithmetical operations +,
−, ×, and the special elements 0 and 1.

(b) Modular arithmetic makes Zn into a ring.

(c) Square matrices, with matrix multiplication. The entries can be real numbers,
rational numbers, integers—indeed, they can come from any ring at all, even
from another matrix ring.
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(d) Polynomials. The coefficients can be real numbers, integers, . . . : again, they
can come from any ring, even a matrix ring, or another polynomial ring. We will
need to be quite careful in defining polynomial rings properly, though—they are
not as straightforward as you might hope.

The examples of (a) a polynomial ring whose coefficients are matrices, and (b) a matrix
ring whose coefficients are polynomials, shows that two rings can look different but
actually be mathematically “the same”: this concept is known as isomorphism, which
will play an important part in this course.

2 Revision of basic mathematical concepts
I will begin by reminding you of those parts of Introduction to Algebra which are
most important for this course. All this needs to be at your fingertips before you can
proceed. If it is not, then revise it, perhaps from your Introduction to Algebra notes,
urgently.

Sets. Set notation. Two sets are equal if (and only if) they have the same elements.
Subsets, intersection A∩B, union A∪B, difference A \B and symmetric difference
A4B. Rules like (A∩B)∩C = A∩ (B∩C) and A∩ (B∪C) = (A∩B)∪ (A∩C).

Cartesian product: A×B = {(a,b) | a ∈ A,b ∈ B}. The ‘ordered pair’ (a,b) will
not be defined more formally here, though it can be if needed.

Functions. The word function is used in slightly different senses in different parts
of mathematics (like the word ‘polynomial’), and it is therefore important that we are
precise about the sense we use. Formally, a function f : A → B is a subset F of the
Cartesian product A×B, with the property that for every a ∈ A, there is exactly one
b ∈ B such that (a,b) ∈ F . For example, instead of defining a function f : R→ R by
f (x) = x2, we define it as the set {(x,x2) | x ∈R}, which in other parts of mathematics
might be called the graph of the function.

Operations. This word is used to describe special types of functions. An operation
like ‘plus’ can be thought of as a function from ordered pairs of (say) real numbers, to
real numbers, that is

plus : R×R→ R;(x,y) 7→ x+ y.

With our formal definition of a function as a set of ordered pairs, this looks even worse:

plus = {((x,y),z) | x,y,z ∈ R,x+ y = z}.

Don’t worry, however, we are not going to be using this cumbersome notation very
often.

Formally, a binary operation on a set S is just a function f : S×S → S.
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Examples of different types of functions: a function f : A→ B is Lecture 2

• surjective if every b ∈ B is of the form f (a) for some a ∈ A;

• injective if no b ∈ B is of the form f (a1) = f (a2) for two different elements
a1,a2 ∈ A;

• bijective if both of these conditions hold: i.e. every b ∈ B is of the form f (a) for
a unique element a ∈ A.

Examples of different types of operations: a binary operation ∗ on a set A is

• commutative if a∗b = b∗a for all a,b ∈ A;

• associative if (a∗b)∗c = a∗ (b∗c) for all a,b,c ∈ A; for example, the operation
+ on R is associative, but the operation − on R is not.

Relations. We will not need much on the formal definitions of relations, apart from
the important instance of equivalence relations (see below). Formally, a binary rela-
tion on a set A is any subset of A×A. In particular, a function f : A → A is a special
type of relation. Informally, a relation R⊆ A×A is more usually written in infix nota-
tion, that is, instead of writing (a,b) ∈ R we write aRb, and say ‘a is related to b (by
R)’.

Examples of different types of relations: to say that a binary relation R on a set A is

• reflexive means that: aRa for all elements a ∈ A;

• symmetric means that: if aRb, then also bRa;

• transitive means that: if aRb and bRc, then also aRc;

• anti-symmetric means that: if aRb and bRa, then a = b.

To remember which is which, remember that the alphabetical order r, s, t, corresponds
to the order 1, 2, 3 of the number of elements of A mentioned in the definition.

Examples of anti-symmetric relations are ≤ on R, and ⊆ on P (X). Also < on R
is anti-symmetric: to prove this we merely need to show that if a < b and b < a then
something-or-other happens—but the hypothesis (a < b and b < a) can never be true
and therefore we don’t have to prove anything.
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3 Equivalence relations
Lecture 3

An equivalence relation R is one which is reflexive, symmetric and transitive. If R
is an equivalence relation on A, and a ∈ A, then the equivalence class of a is the set
of elements which are related to a, that is {b ∈ A | aRb}, written either R(a) or [a]R
or [a], or some other similar notation. The important fact about equivalence relations
is that these equivalence classes form a partition of A, which means that they (a) are
non-empty, since a∈ R(a), (b) cover the whole set A, since

S
a∈A R(a)⊇

S
a∈A{a}= A

implies
S

a∈A R(a) = A, and (c) do not overlap, that is, if R(a)∩R(b) 6= /0 then in fact
R(a) = R(b).

To prove this last statement, suppose c ∈ R(a)∩ R(b), so that cRa and cRb, so
bRc, so bRa. Now if d ∈ R(b), then bRd, so dRb, so dRa, so aRd, that is d ∈ R(a).
This shows that R(b)⊆ R(a), and a similar argument gives R(a)⊆ R(b), and therefore
R(a) = R(b) as required.

Conversely, given a partition of A, we can define a relation R on A by saying aRb
just when a and b are both in the same part of the partition. It is easy to verify that
R is an equivalence relation, and that the equivalence classes are just the parts of the
original partition.

Examples of equivalence relations. The easiest example is the relation of equality,
on any set A. This is reflexive, since a = a for every a ∈ A. It is symmetric, since if
a = b then b = a. And it is transitive, since if a = b and b = c, then a = c.

The most general example has already been given above: take any partition of A,
and construct the equivalence relation corresponding to it. Another way of looking at
this is to take any function f : A → B, and define a relation by aRb just when f (a) =
f (b). It is easy to check that this is an equivalence relation.

Modular arithmetic. Another example you have already seen is the set of ‘integers
modulo n’, where n is a positive integer (n > 1 for some applications). Define a relation
R on Z by aRb whenever a−b is divisible by n, that is a−b = cn for some integer c
(depending on a and b, of course). This relation R is (a) reflexive, since a−a = 0 = 0n
for every a ∈ Z, (b) symmetric, since if a− b = cn then b− a = (−c)n, and −c ∈ Z
since c ∈ Z, and (c) transitive, since if a−b = cn and b−d = en then a−d = (c+e)n,
with c + e ∈ Z because c,e ∈ Z. It is easy to see that there are just n equivalence
classes, namely [0], [1],. . . , [n−1]. These are sometimes written [0]n, [1]n, . . . , [n−1]n
for clarity.

The important thing about this construction, however, is that we can do arithmetic
with these equivalence classes. Notice that if x ∈ [a] and y ∈ [b], then x = a + cn and
y = b + dn for some integers c,d, and therefore x + y = (a + b)+ (c + d)n ∈ [a + b].
This means that it makes sense to define [a] + [b] = [a + b], because if you add any
element of [a] and any element of [b] you always get an element of [a + b]. Similarly
you can calculate that xy = ab+(bc+ad +cdn)n∈ [ab], so we can define [a].[b] = [ab]
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without risk of confusion.
This is an example of a construction of a quotient ring, which is a very important

concept in this course, and in mathematics generally. This type of quotient is often
found difficult on first meeting. However, if you really understand how modular arith-
metic works, then you should not have any difficulty with quotient rings, which are
just a more abstract and general form of the same thing.

4 Rings
Lecture 4

Definition. A ring is a set R with two binary operations + and ., and a special element
0, such that:
Rules for addition:

(A0) (closure: not strictly necessary) a+b ∈ R whenever a,b ∈ R;

(A1) (associativity) (a+b)+ c = a+(b+ c) whenever a,b,c ∈ R;

(A2) (zero) a+0 = 0+a = a whenever a ∈ R;

(A3) (negatives, or additive inverses) for every a ∈ R, there exists a b ∈ R such that
a+b = b+a = 0;

(A4) (commutativity) a+b = b+a whenever a,b ∈ R;

Rules for multiplication:

(M0) (closure: not strictly necessary) a.b ∈ R whenever a,b ∈ R;

(M1) (associativity) (a.b).c = a.(b.c) whenever a,b,c ∈ R;

Rules involving both:

(D) (distributivity) a.(b+ c) = (a.b)+(a.c) and (b+ c).a = (b.a)+(c.a) whenever
a,b,c ∈ R.

Notice that we have not assumed that there is only one zero, or only one negative
of an element. We can prove these facts from the definition:

Uniqueness of zero. Suppose that 01 and 02 are two different zeros, so that a+01 =
01 + a = a + 02 = 02 + a = a for all a. Now substituting a = 01 into a + 02 = a gives
01 + 02 = 01, while substituting a = 02 into 01 + a = a gives 01 + 02 = 02. Hence
01 = 02.

Uniqueness of negatives. Now suppose that a has two negatives, say b and c. Then
we have a+b = b+a = a+c = c+a = 0 and therefore b+(a+c) = b+0 = b while
(b+a)+ c = 0+ c = c so by the associative law, b = c.
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Special types of rings. A ring may or may not satisfy the analogues of (A2), (A3),
(A4) for multiplication:

(M2) (one) there is an element 1∈ R (with 1 6= 0) such that a.1 = 1.a = a for all a∈ R;

(M3) (inverses) for all a ∈ R except for a = 0, there is an element b ∈ R such that
a.b = b.a = 1;

(M4) (commutativity) a.b = b.a for all a,b ∈ R.

A ring which satisfies (M2) is called a ring with one. A ring which satisfies (M2) and
(M3) is called a division ring. A ring which satisfies (M4) is called a commutative
ring. A ring which satisfies all three of (M2), (M3) and (M4) is called a field.

Cancellation laws. If x+ y = x+ z for some elements x,y,z ∈ R, we want to deduce
that y = z. This follows by the law of negatives: there is an element t such that t + x =
x + t = 0, so t +(x + y) = (t + x)+ y = y and t +(x + z) = (t + x)+ z = z, and since
t +(x+ y) = t +(x+ z) we have y = z.

Multiplication by zero. We want to show that 0.a = a.0 = 0 for all a. To do this,
expand 0 = 0 + 0 and use the distributive law: 0.a = (0 + 0).a = 0.a + 0.a and also
0.a = 0 + 0.a, so 0 + 0.a = 0.a + 0.a and by the cancellation law, 0 = 0.a. A similar
argument gives a.0 = 0 for all a ∈ R.

Lecture 5
Negation and subtraction. Unfortunately, a minus sign has two different meanings
in ordinary arithmetic, which get carried over to rings in general. The first is the unary
minus, whereby−a means the unique element of R such that a+(−a) = (−a)+a = 0,
that is, −a is the negative of a. The second is the binary minus, whereby a− b is a
shorthand notation for a +(−b). We will prove the important properties of the unary
minus, from which you can deduce the important properties of the binary minus by
using the axioms for addition (A0)–(A4).

Firstly, (a+b)+((−b)+(−a)) = ((a+b)+(−b))+(−a) = (a+(b+(−b)))+
(−a) = (a+0)+(−a) = a+(−a) = 0, so (−b)+(−a) (or (−a)+(−b)) is the neg-
ative of a+b. In other words −(a+b) = (−a)+(−b).

Next, by the distributive law, (ab)+(−a)b = (a+(−a))b = 0.b = 0, so −(ab) =
(−a)b and similarly −(ab) = a.(−b). Moreover, (−a)(−b)+(−a)b = (−a)((−b)+
b) = (−a).0 = 0 so (−a)(−b) is the negative of (−a)b =−(ab). But ab is a negative
of −(ab), so (−a)(−b) = ab.

Addition of several elements. By repeated use of the associative law of addition we
can show that a sum of n elements, that is a1 +a2 + · · ·+an = ∑

n
i=1 ai is well-defined,

that is, does not depend on the bracketing used to calculate it. The associative law
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itself is the case n = 3 of this. To prove it by induction on n, we can assume it already
holds for all sums of at most n−1 elements, and it remains to show that

(a1 + · · ·+ai)+(ai+1 + · · ·+an) = (a1 + · · ·+a j)+(a j+1 + · · ·+an)

where we might as well suppose that i < j. We have

(a1 + · · ·+a j)+(a j+1 + · · ·+an) = ((a1 + · · ·+ai)+(ai+1 + · · ·+a j))+(a j+1 + · · ·+an)
= (a1 + · · ·+ai)+((ai+1 + · · ·+a j)+(a j+1 + · · ·+an))
= (a1 + · · ·+ai)+(ai+1 + · · ·+an).

A similar inductive argument using the commutative law for addition shows that the
ordering of the terms a1, . . . , an does not matter either.

Another consequence (which I did not mention in the lecture, but which is still
important) is that we get extended versions of the distributive laws: (a1 + · · ·+an).b =
(a1.b)+ · · ·+(an.b) and similarly b.(a1 + · · ·+an) = (b.a1)+ · · ·+(b.an).

5 Some important examples of rings
Matrix rings. If R is any ring, we can define the ring of n× n matrices over R,
denoted Mn(R), as follows. First we add two matrices by adding the corresponding
entries, that is (Ai j) + (Bi j) = (Ai j + Bi j), where we use (Ai j) to denote the matrix
whose (i, j) entry is Ai j. Then we multiply two matrices by the rule (Ai j).(Bi j) =
(∑n

k=1 Aik.Bk j).
We need to check that Mn(R) satisfies the axioms for a ring. Most of them follow

easily from the corresponding axioms for the ring R, with the zero matrix being the
one in which every entry is 0. But there is one which is more difficult, namely the
associative law for multiplication.

((Ai j).(Bi j)).Ci j = (
n

∑
k=1

(
n

∑
l=1

Ail.Blk).Ck j)

= (
n

∑
k=1

n

∑
l=1

((Ail.Blk).Ck j)

= (
n

∑
l=1

n

∑
k=1

(Ail.(Blk.Ck j))

= (
n

∑
l=1

Ail.
n

∑
k=1

(Blk.Ck j))

= (Ai j).((Bi j).(Ci j)).

In the first line of this argument, we just use the definition of matrix multiplication,
twice. In the second, we use the (extended) distributive law to bring Ck j inside the
summation. In the third line we re-order the sum using the extended commutative law,
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as well as using the associative law of multiplication. Finally we reverse the argument,
using the distributive law again.

It is easy to see that if R has a one, then so does Mn(R): the one is the identity Lecture 6
matrix, which has the one of R in each diagonal entry, and zero elsewhere. On the
other hand, if n ≥ 2 there are non-zero matrices which do not have inverses, and you
can easily find matrices A and B such that AB 6= BA.

Polynomials. A polynomial over a ring R is a formal expression a0 + a1x + a2x2 +
· · ·+ anxn, also written ∑

n
i=0 aixi. However, we have to be careful about when two

such expressions are equal. Essentially, we can add on any number of zero terms
without changing the polynomial. That is ∑

n
i=0 aixi = ∑

m
i=0 bixi (for m ≥ n) if ai = bi

for all 0 ≤ i ≤ n and bi = 0 for all n < i ≤ m. For convenience, when talking about
a polynomial ∑

n
i=0 aixi, we will often talk about coefficients ai with i > n, with the

understanding that these are to be taken to be 0.
With this convention we can define addition by

(
n

∑
i=0

aixi)+(
m

∑
i=0

bixi) =
max{m,n}

∑
i=0

(ai +bi)xi.

It is easy to check all the addition axioms (A0)-(A4) for a ring: they follow directly
from the corresponding axioms for R itself.

We define multiplication in the way you know, using the law of exponents xi.x j =
xi+ j and collecting together terms with the same power of x. That is

(
n

∑
i=0

aixi).(
m

∑
j=0

b jx j) =
m+n

∑
k=0

( ∑
i+ j=k

aib j)xk.

Now we can rewite the coefficient of xk on the right-hand side as

∑
i+ j=k

aib j =
k

∑
i=0

aibk−i

if we wish. The distributive laws are easy to check, but again the associative law of
multiplication is the tricky one.

((
n

∑
i=0

aixi).(
m

∑
j=0

b jx j)).(
p

∑
k=0

ckxk) = (
m+n

∑
r=0

( ∑
i+ j=r

aib j)xr).(
p

∑
k=0

ckxk)

=
m+n+p

∑
s=0

( ∑
r+k=s

( ∑
i+ j=r

aib j)ck)xs

=
m+n+p

∑
s=0

( ∑
i+ j+k=s

(aib j)ck)xs
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using the extended distributive law in R to re-arrange the sum of products for each
coefficient. Now we use the associative law in R to re-write the individual terms
(aib j)ck = ai(b jck), and a similar argument to the above to show that this is the same
as

(
n

∑
i=0

aixi).((
m

∑
j=0

b jx j).(
p

∑
k=0

ckxk)).

Rings of functions. Functions as used in calculus usually form rings under pointwise Lecture 7
addition and multiplication. That is, if f and g are functions, say from R to R, we
define f +g as the function that maps x to f (x)+g(x), written ( f +g)(x) = f (x)+g(x);
and similarly f .g is defined by ( f .g)(x) = f (x).g(x). The ring axioms are easy to
check, and come directly from the ring axioms for R. The zero function is the function
defined by zero(x) = 0, and the negative of f is the function − f defined by (− f )(x) =
−( f (x)).

More generally, if R is any ring, and X is any set, then we can make the set of
functions from X to R into a ring using the same rules.

Rings of sets. If we try to make P (X), the power set of X , into a ring, we might try
to use ∪ as addition and ∩ as multiplication. But this does not work. (Exercise: which
axioms fail?)

Instead, we define A + B = A4B and A.B = A∩B. Then most of the axioms are
easy to check. The zero is /0, and the negative of A is A itself, since A4A = /0. The
most difficult one is associativity of 4, which was in the first set of exercises. The
next is distributivity, A∩ (B4C) = (A∩B)4(A∩C). To see this, the left-hand-side
is A∩ ((B∩Cc)∪ (C∩Bc)) = (A∩B∩Cc)∪ (A∩C∩Bc), while the right-hand-side is
((A∩B)∩ (A∩C)c)∪ ((A∩C)∩ (A∩B)c). Taking one of the two terms on the right-
hand-side, we get (A∩B)∩ (A∩C)c = (A∩B)∩ (Ac∪Cc) = (A∩B∩Ac)∪ (A∩B∩
Cc) = (A∩B∩Cc). Similarly the other term is (A∩C∩Bc), and the right-hand-side
equals the left-hand-side.

Boolean rings. The above example has the property that A∩A = A for all A ∈ P (X).
Any ring with this property, that is x.x = x for all x ∈ R, is called a Boolean ring, after
George Boole. Note that in any Boolean ring, we have x + x = 0 for all x ∈ R. This is
because (x+x).(x+x) = x+x, so x.x+x.x+x.x+x.x = x+x by the distributive laws,
so x + x + x + x = x + x, and therefore by the cancellation law, x + x = 0. Similarly,
x + y = (x + y).(x + y) = x.x + x.y + y.x + y.y = x + y + x.y + y.x so by cancellation
x.y + y.x = 0. But x.y + x.y = 0, so by cancellation again, x.y = y.x, that is every
Boolean ring is commutative.

Zero rings. If R has an addition defined on it, satisfying the axioms (A0)–(A4), then
we can make R into a ring by defining the zero multiplication, x.y = 0 for all x,y ∈ R.
It is easy to check the remaining ring axioms.
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6 Subrings
Lecture 8

Definition. We have met several examples of one ring S contained inside another
one R. If the ring operations in the small ring S are just the restrictions to S of the
corresponding operations in R, we say that S is a subring of R.

In order to check that S is a subring of R, it is sufficient to check that

• 0 ∈ S;

• if a,b ∈ S then a+b ∈ S, and a.b ∈ S and −a ∈ S.

This is because all the other ring axioms follow automatically in S, since they hold in
the whole of R. For example, a+b = b+a for all a,b ∈ R, so it certainly follows that
a+b = b+a for all a,b ∈ S.

Examples. Z is a subring of R.
Suppose that S is a subring of R. If R is commutative, then so is S. But if S is

commutative, R may not be: for example, if R is the ring of all 2×2 real matrices, and
S is the subring of diagonal matrices.

But the situation with ones (identity elements) is rather unexpected. You will not
be too surprised to learn that if R has a one, then S need not have a one: for example,
R = Z and S = 2Z, the set of even integers. But you may be surprised to learn that if S
has a one, it does not follow that R has a one; and even if it does, it may not be the same

as the one in S. For example, if R = M2(Z), then it has a one, namely
(

1 0
0 1

)
, while

the subring S consisting of all matrices of the form
(

a 0
0 0

)
also has a one, namely(

1 0
0 0

)
. Or keep the same S, and let R be the ring of all diagonal matrices. Now if

we change R to be the ring of all diagonal matrices of the form
(

a 0
0 2d

)
, then R no

longer has a one, but its subring S does.
Now suppose that R and S are both rings with one. Clearly R can be a division ring

without S being a division ring: for example, take R = Q and S = Z. It is a little less
obvious that S can be a division ring without R being a division ring, even if R and S
have the same one. For example, take R = M2(R), and S to be the subring of scalar

matrices, that is matrices of the form
(

a 0
0 a

)
.

A subring test. Suppose that S is a non-empty subset of a ring R. If a− b ∈ S and Lecture 9
a.b ∈ S for all a,b ∈ S, then S is a subring. To see this, first pick any a ∈ S; then
we have 0 = a− a ∈ S. Next, −a = 0− a ∈ S; and if also b ∈ S, then −b ∈ S, so
a+b = a− (−b) ∈ S.
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7 Quotient rings
Our goal is to do ‘modular arithmetic’ in as general a context as possible. In that
example, we have a ring, Z, and a subring, nZ, so let us see how far we can go if we
replace Z by a general ring R, and replace nZ by a general subring S.

Congruence. First we define ‘congruence modulo S’ by analogy with congruence
modulo n: just as we say a ≡ b mod n if a−b is divisible by n, we say that a ≡S b if
a−b ∈ S. This relation is

• reflexive, because for any a ∈ R we have a−a = 0 ∈ S, that is a≡S a;

• symmetric, because if a ≡S b then a− b ∈ S, so b− a = −(a− b) ∈ S, that is
b≡S a;

• transitive, because if a−b ∈ S and b− c ∈ S, then a− c = (a−b)+(b− c) ∈ S.

Thus it is an equivalence relation. Indeed, to prove this we have only used the facts
that S is non-empty, and closed under addition and negation. We have not used the
multiplication.

The equivalence classes of this relation are called the cosets of S. The coset con-
taining a also contains a+ s for every s ∈ S. Indeed, it is easy to see that it consists of
exactly these elements and no others. We write S+a = a+S = {a+ s | s ∈ S} for this
coset.

When are two cosets equal? Just as in modular arithmetic we have [a]n = [bn] if and
only if a−b is a multiple of n, so in this more general context we have S + a = S + b
if and only if a−b ∈ S.

Addition modulo S. Just as [a]n +[b]n = [a+b]n, so we want to define (S+a)+(S+
b) = S +(a + b). And we have exactly the same problem as before, to prove that this
is well-defined. So pick any x ∈ S + a and any y ∈ S + b and see what happens when
we add them together. Now x = s1 +a for some s1 ∈ S, and y = s2 +b for some s2 ∈ S,
so x + y = s1 +a + s2 +b = (s1 + s2)+(a +b) ∈ S +(a +b). So addition of cosets is
well-defined.

It is also commutative, since (S +a)+(S +b) = S +(a+b) = S +(b+a) = (S +
b)+ (S + a). The zero coset S = S + 0 acts as a zero, since (S + a)+ (S + 0) = S +
(a + 0) = S + a. The negative of S + a is S + (−a), since (S + a) + (S + (−a)) =
S +(a+(−a)) = S +0 = S. Associativity of addition is also easy to see.

Multiplication modulo S. Just as [a]n.[bn] = [a.b]n, we want to define (S + a).(S +
b) = S +(a.b). This time we encounter an unexpected problem, however. If we pick
as before x = s1 + a ∈ S + a and y = s2 + b ∈ S + b and calculate x.y we get x.y =
(s1 +a).(s2 +b) = s1.s2 +a.s2 + s1.b+a.b, and in order to show that this is in S+a.b
we need each of the first three terms to lie in S. This is a stronger condition than just
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that S is a subring. We need the product of any element of R and any element of S to
be in S. (This is what we actually use in the case of modular arithmetic: the product of
any integer with any multiple of n is again a multiple of n.)

A subring S of a ring R is called an ideal of R if it has this extra property: a.r ∈ S
and r.a ∈ S whenever r ∈ R and a ∈ S.

If S is an ideal in R, then multiplication of cosets is well-defined, and the other
ring axioms (associativity of multiplication, and the two distributive laws) are easy to
verify. This means we have turned the set of cosets into a ring, known as the quotient
of R by S, written R/S. For example, the ring of integers modulo n is the quotient of
the ring Z by the ideal nZ, so is now written Z/nZ.

This construction of a general quotient ring is exactly the same as the construc-
tion of modular arithmetic, just done a little more abstractly, with a slightly different
notation. So if you understand modular arithmetic, you should understand quotient
rings. But now we can do ‘modular arithmetic’ in a very general context, and we
can make a very wide range of examples, which turn out to be very useful in a huge
range of genuine applications, from encryption of internet commercial transactions, to
error-correcting codes in virtually every electronic device in use today.

Summary. Here we summarise the construction of modular arithmetic and quotient Lecture 10
rings, to show the connections clearly.

Modular arithmetic Z/nZ Quotient rings R/I
Equivalence relation: a≡ b mod n if a−b ∈ nZ a≡I b if a−b ∈ I
Equivalence classes: [a]n I +a
Addition: [a]n +[b]n = [a+b]n (I +a)+(I +b) = I +(a+b)
is well-defined: x ∈ [a]n,y ∈ [b]n x ∈ I +a,y ∈ I +b

⇒ x+ y ∈ [a+b]n ⇒ x+ y ∈ I +(a+b)
Multiplication: [a]n.[b]n = [a.b]n (I +a).(I +b) = I +(a.b)
is well-defined: x ∈ [a]n,y ∈ [b]n x ∈ I +a,y ∈ I +b

⇒ x.y = (a+ kn).(b+ ln) ⇒ x.y = (a+ i1).(b+ i2)
= a.b+(kb+al + kln)n ∈ [a.b]n = a.b+a.i2 + i1.b+ i1.i2 ∈ I +(a.b)

Zero: [0]n +[a]n = [a]n I +(I +a) = I +a
Negatives: [a]n +[−a]n = [0]n (I +a)+(I +(−a)) = I +0 = I

Unfortunately, there is plenty of scope for confusion with the notation here. For
example, the symbol + is used for at least three different things in this table: first, it is
the addition in Z or R, as in a+b; second, it is used in the notation I +a for the coset
containing a, which we should perhaps called [a] or [a]I instead; and third, it is used
for the addition in Z/nZ or R/I, as in the middle of (I +a)+(I +b).

Examples of ideals. In any commutative ring R, and for any fixed r ∈ R, the set of
multiples of r, that is I = {rx | x ∈ R}, is an ideal. This is because (it is non-empty
and) for any rx,ry ∈ I we have rx− ry = r(x− y) ∈ I, and for any y ∈ R we have
(rx)y = r(xy) ∈ I.
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In a non-commutative ring, you need to multiply on both sides, and I = {xry | x,y∈
R} is an ideal. But this often gives the whole ring. For example, it can be shown that
in M2(R) there are only two ideals, namely {0} and the whole ring.

If R = P (A) with addition given by symmetric difference, and multiplication by Lecture 11
intersection, the set of multiples of B (for a fixed B ⊆ A) is just the set I = P (B)
of subsets of B. Since P (B) is non-empty, and for any X ∈ R and Y,Z ∈ I we have
Y +Z = Y4Z ⊆ B and X .Y = X ∩Y ⊆ B, we see that I is an ideal in R.

What does the quotient ring R/I look like in this case? First look at the cosets: for
any X ∈ R, the coset of X is X +S = {X4Y |Y ⊆ B}. Now putting Y = X ∩B we have
X4Y = X4(X ∩B) = X \ (X ∩B) = X ∩ (A \B) ⊆ A \B. So every coset contains an
element which is a subset of A\B. Indeed, it is quite easy to see that it contains exactly
on such element. So there is a bijection between the set of cosets of P (B) in P (A), and
the set of subsets of A\B. That is, a bijection between P (A)/P (B) and P (A\B).

Now what about the ring operations? Look first at multiplication, that is, intersec-
tion. If X ,Y ⊆ A \B, then by definition (P (B) + X).(P (B) +Y ) = P (B) + (X ∩Y ).
Similarly, (P (B)+X)+(P (B)+Y ) = P (B)+(X4Y ). Thus the ring operations in the
quotient P (A)/P (B) obviously correspond exactly to the ring operations in P (A\B).

Hence the quotient ring P (A)/P (B) looks exactly the same as P (A \B). We say
that P (A)/P (B) is isomorphic to P (A\B).

A good example of a ring isomorphism is the map f between P ({x}) under 4 and
∩ on the one hand, and Z/2Z under + and . on the other, defined by mapping /0 to [0]2
and {x} to [1]2.

Isomorphism. More formally, a map f : R → S from a ring R to a ring S is an iso- Lecture 12
morphism if it is a bijection, and it preserves the ring operations, in the sense that for
all a,b ∈ R,

• f (a+b) = f (a)+ f (b);

• f (a.b) = f (a). f (b).

Notice that the ring operations + and . on the left are the operations in R, while those
on the right are the operations in S.

If f is a ring isomorphism, then f (a)+ 0S = f (a) = f (a + 0R) = f (a)+ f (0R) so
by cancellation, f (0R) = 0S. Similarly, 0S = f (0R) = f (a+(−a)) = f (a)+ f (−a), so
f (−a) =− f (a).

Homomorphism. If we generalise this definition to any function f , not necessarily
a bijection, we get a homomorphism. It still satisfies the rules f (a+b) = f (a)+ f (b)
and f (a.b) = f (a). f (b); and it still follows that f (0) = 0 and f (−a) =− f (a).

A good example is the map f : Z→ Z/nZ defined by f (a) = [a]n. This is a homo-
morphism which is surjective but not injective. Another example is g : Z→ R defined
by f (x) = x. This homomorphism is injective but not surjective.
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The image of a homomorphism f : R→ S is the subset im( f ) = f (R) = { f (r) | r ∈
R} of S. It is a subring, since it is non-empty ( f (0) = 0∈ f (R)), and for all f (a), f (b)∈
f (R) we have f (a)− f (b) = f (a−b) ∈ f (R) and f (a). f (b) = f (a.b) ∈ f (R).

The kernel of a homomorphism f : R→ S is the subset ker( f ) = {r ∈ R | f (r) = 0}
of R, that is the subset of elements which get mapped to zero. It is an ideal in R, since
it is non-empty, and if f (a) = f (b) = 0 then f (a−b) = f (a)− f (b) = 0−0 = 0, and if
also r ∈ R, then f (a.r) = f (a). f (r) = 0. f (r) = 0 and f (r.a) = f (r). f (a) = f (r).0 = 0.

The first isomorphism theorem. In the above example of f : Z→ Z/nZ, the kernel
of f is {k ∈ Z | [k]n = [0]n}= nZ, and you will notice that im( f ) = Z/ker( f ). In fact
the same is true in general: if f : R → S is any ring homomorphism, then im( f ) is
isomorphic to R/ker( f ). We write im( f )∼= R/ker( f ).

To prove this, we need to show there is an isomorphism φ : im( f ) → R/ker( f ).
Clearly we must define φ( f (r)) = (ker( f )) + r. But does this even make sense? If
f (r) = f (s) then f (r−s) = f (r)− f (s) = 0, so r−s∈ ker( f ), and therefore (ker( f ))+
r = (ker( f )) + s. Similarly, reversing this argument, if (ker( f )) + r = (ker( f )) + s
then f (r) = f (s), which means that φ is injective. Since φ is obviously surjective,
this implies φ is a bijection. This is the hard part of the proof done. To show that φ

preserves the ring operations is easy by comparison: φ( f (r)+ f (s)) = φ( f (r + s)) =
(ker( f ))+(r + s) = (ker( f )+ r)+(ker( f )+ s) = φ( f (r))+φ( f (s), and similarly for
multiplication.

To summarise: if f : R→ S is a ring homomorphism, then (a) im( f ) is a subring of Lecture 13
S; (b) ker( f ) is an ideal in R; and (c) im( f )∼= R/ker( f ).

As a canonical example, you should think of R = Z, and S = Zn, that is the ring
of integers modulo n. The map f : Z→ Zn defined by f (a) = [a]n is a ring homomor-
phism, which is surjective, and therefore we have Zn ∼= Z/nZ. The latter isomorphism
is given by [a]n 7→ nZ+a.

Another example, considered above, is R = P (A) and S = P (B), where B⊂ A, and
f is defined by f (X) = (X ∩B) for every X ⊆ A. Using properties of the set operations
we get (X ∩B)4(Y ∩B) = (X4Y )∩B and (more obviously) (X ∩B)∩ (Y ∩B), and
therefore f is a ring homomorphism. The kernel of f is {X ⊆ A | X ∩B = /0}= P (A\
B). Thus P (A\B)∼= P (A)/P (B). In particular, we see that P (B) is an ideal in P (A).

The second isomorphism theorem. This is about quotient rings of quotient rings,
and tells you that really they are just the same as ordinary quotient rings (which should
be a relief). Suppose R is a ring, and I ⊆ J are two ideals in R. Then we can define a
ring homomorphism f : R/I → R/J by f (I + r) = J + r. This is well-defined because
if I + r = I + s then r− s ∈ I ⊆ J, so J + r = J + s. It is a homomorphism because
f ((I+r)+(I+s)) = f (I+(r+s)) = J+(r+s) = (J+r)+(J+s) = f (I+r)+ f (I+s)
and f ((I + r).(I + s)) = f (I +(r.s)) = J +(r.s) = (J + r).(J + s) = f (I + r). f (I + s).
Its kernel is {I + r | J + r = J}= {I + r | r ∈ J}= J/I. Hence by the first isomorphism
theorem, R/J ∼= (R/I)/(J/I).
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As an example, take R = Z, I = 6Z and J = 3Z. Then R/I is just the integers
modulo 6, which as a set is {6Z,6Z+ 1,6Z+ 2,6Z+ 3,6Z+ 4,6Z+ 5}. Inside this,
J/I = {6Z,6Z+3}, which has three cosets in R/I, namely itself and {6Z+1,6Z+4}
and{6Z+ 2,6Z+ 5}. These three cosets form the quotient ring (R/I)/(J/I) and you
can see that these three cosets just look like 0,1,2 respectively in the ring of integers
modulo 3. Indeed, the three cosets 3Z, Z+1 and Z+2 of 3Z in Z are just formed by
taking the appropriate union of cosets of 6Z.

One obvious consequence of the second isomorphism theorem is that (with the Lecture 14
same notation) J/I is an ideal in R/I. Indeed, every ideal in R/I is of this form, for
some ideal J in R with I ⊆ J. Similarly, every subring of R/I is of the form S/I for
some subring S of R with I ⊆ S. This is known as the correspondence theorem.

The third isomorphism theorem. This is about quotient rings of subrings. If S is a
subring of the ring R, and I is an ideal in R, then let us define S+I = {s+ i | s∈ S, i∈ I}.
Then we get a homomorphism f : S → R/I by defining f (s) = I + s. The image of f
is then (S + I)/I. The kernel of f is {s ∈ S | I + s = I}= s ∈ S | s ∈ I}= S∩ I. Hence
(S + I)/I ∼= S/(S∩ I). In particular, S + I is a subring of R, and S∩ I is an ideal in S.
(However, not every ideal of S need be of this form.)

8 Factorisation
You saw in Introduction to Algebra that Z/nZ is a field if and only if n is prime. When Lecture 15
we generalize to quotients of other rings than Z, we are going to need appropriate
generalizations of ‘prime’, and appropriate generalizations of factorizing elements as
products of primes. To avoid complications, let us assume our ring is commutative,
and has a one.

Zero divisors. In Z6 we have the annoying fact that [2].[3] = [0]. That is, a product
of two non-zero elements can be zero. This has the even more annoying consequence
that [2].[4] = [2], which plays havoc with any idea of factorising elements as products
of primes. More generally, if a,b ∈ R are non-zero elements with a.b = 0, we call a
and b zero-divisors. In this situation, we have a.(b + 1) = a, which again means that
there is no sensible meaning to ‘factorising’ an element.

Clearly we shall want to restrict attention to rings which do not have zero-divisors.
A commutative ring with a one which has no zero-divisors is called an integral domain
(or sometimes just a domain: but do not confuse this with the domain of a function).

Example: In Z/nZ, the element [a] is a zero-divisor if and only if 1 < gcd(a,n) < n.
For if n > gcd(a,n) = d > 1 then a = dx and n = dy for some x,y,∈ Z so n divides
nx = dyx = ay but n does not divide y or a. In other words [a].[y] = [0] but [a] 6= [0] 6=
[y], so [a] is a zero-divisor. On the other hand, if gcd(a,n) = n then [a] = [0], so [a] is
not a zero-divisor. Similarly, if gcd(a,n) = 1, and [a].[y] = [0], then n divides ay but
has no common factors with a, so must divide y.
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This tells us that Z/nZ is an integral domain if and only if n is prime.
Example: If R is an integral domain, then so is R[x] (the ring of polynomials over

R). For if the leading terms of two polynomials are anxn and bmxm, with (by definition)
an 6= 0 6= bm, then the leading term of their product is anbmxn+m, since anbm 6= 0. In
particular, the product of two non-zero polynomials is non-zero.

Units. In a ring with a one, some elements may have multiplicative inverses: an
inverse of a ∈ R is an element b such that ab = ba = 1. If a has an inverse, then that
inverse is unique (the proof is very similar to the proof that −a is well-defined), and is
written a−1. An element which has an inverse is called a unit. Now 1 is a unit, since Lecture 16
1.1 = 1, and if u is a unit, then so is u−1. Moreover, if u and v are units, then so is uv,
since (uv)(v−1u−1) = 1.

This means that the units in a ring R form a group, written U(R), under multiplica-
tion.

In Z, the units are 1 and −1. In Z/nZ they are all [a] such that gcd(a,n) = 1. For if
gcd(a,n) = 1 then by Euclid’s algorithm 1 = as+nt for some s, t ∈ Z, so [a].[s] = [1].
Conversely, if gcd(a,n) > 1 then either [a] = [0] or [a] is a zero-divisor. In either case,
[a] is not a unit.

(In general, an element cannot be both a unit and a zero-divisor: for if a is a unit,
then there exists b such that ab = 1, while if a is a zero-divisor, there exists c 6= 0 such
that ac = 0, and putting these together gives c = 1.c = ab.c = ac.b = 0.b = 0, which is
a contradiction.)

Two elements a,b in R, a commutative ring with one, are called associates if a = bu
for some unit u. The properties just proved for units mean that the relation of being
associates is reflexive, symmetric and transitive, so is an equivalence relation. The
equivalence classes are called associate classes. The associate classes in Z/15Z are
{0}, the units {1,2,4,7,8,11,13,14}, {3,6,9,12} and {5,10}.

More generally, the associate classes in Z/nZ are {a | gcd(a,n) = d} for each
divisor d of n.

Divisibility in integral domains. If we want to define greatest common divisors Lecture 17
(g.c.d.s) in general, we must use only divisibility, and not the ordering which we used
on Z. Even then, g.c.d.s may not exist. In any integral domain R, we say that a divides
b, and write a|b, if there exists c ∈ R such that b = ac.

Notice that if a|b and b|a then a and b are associates: for if b = ac and a = bd we
can substitute one in the other to get b = bcd, and then b(1− cd) = 0. Since R is an
integral domain, we deduce that either b = 0 (in which case also a = 0) or 1− cd = 0
(in which case cd = 1 so c and d are units). The converse is also true, and easy to see:
if a and b are associates, then a = bu and b = av for some units u, v, so a|b and b|a.

Now a greatest common divisor of a and b is any element d which satisfies:

• d|a and d|b;
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• if e|a and e|b then e|d.

Suppose that d′ is another g.c.d. of a and b. Then d′|a and d′|b, so by the second
part of the definition d′|d. Similarly, since d′ is a g.c.d. of a and b, and d|a and d|b,
we deduce that d|d′. Hence d and d′ are associates.

Conversely, if d′ is an associate of d, say d′ = du and d = d′v for some units u,v,
then d′|d|a and d′|d|b, and if e|a and e|b then e|d|d′, so d′ is another g.c.d. of a and b.

Euclidean domains. So far, the only method we know for finding g.c.d.s is Euclid’s Lecture 18
algorithm. This relies on repeated application of the division algorithm, which allows
us to divide one (positive) integer by another to get a quotient and a remainder, with
the crucial property that the remainder is smaller than the divisor. You can also easily
generalise to negative integers. That is, given a, b 6= 0 we can find q and r such that
a = bq+ r, and 0≤ r < b.

In order to generalise this we need an appropriate notion of ‘smaller than’. A
Euclidean function on an integral domain R is a function d : R → N0 = {0,1,2,3, . . .}
with the following properties:

• d(ab)≥ d(a), whenever b 6= 0;

• if b 6= 0, and a ∈ R, then there exist q,r ∈ R such that

a = bq+ r and

d(r) < d(b), or r = 0.

If R has a Euclidean function, then it is called a Euclidean domain.
For example, Z is a Euclidean domain: there are various possible choices for the

Euclidean function, for example d(a) = |a|, or d(a) = |a|−1, or d(a) = a2. Another
example is the ring R[X ] of polynomials with real coefficients, with d( f ) = deg( f ).

In any of these examples, we now have a method of computing g.c.d.s. Given a and
b, put a0 = a and a1 = b, and successively compute a0 = a1q1 +a2, . . . , an−1 = anqn +
an+1, an = an+1qn+1, where we suppose that an+1 is the last non-zero remainder. (The
algorithm does terminate, because the remainders at each stage are getting ‘smaller’,
in the sense that d(ai+1) < d(ai), and because the degrees are non-negative integers,
they must eventually stop.) The last equation shows that gcd(an,an+1) = an+1, and
the general equation ai = ai+1qi+1 + ai+2 shows that gcd(ai,ai+1) = gcd(ai+1,ai+2).
Hence by induction, gcd(a,b) = an+1. Working backwards, substituting each equation
in the previous one, enables us to write an+1 = ax+by for some x,y ∈ R.

Principal ideal domains. It is clear that if R is any commutative ring, and a ∈ R, Lecture 19
then the set aR = {ar | r ∈ R} of multiples of a is an ideal. An ideal of this form is
called a principal ideal. In a Euclidean domain, it turns out that all ideals are of this
form.

17



For suppose that R is a Euclidean domain, and I is a non-zero ideal in R. Then we
can pick a ∈ I \{0} of minimal degree, that is d(a)≤ d(x) for all x ∈ I \{0}. I claim
that in this case I = aR. One direction is obvious: if ar ∈ aR, then ar ∈ I, by definition
of an ideal. For the other direction, suppose x ∈ I. Then by Euclid’s algorithm, there
exist q,r ∈R such that x = aq+r, and either r = 0 or d(r) < d(a). The latter possibility
leads to r = x−aq ∈ I (since x,a ∈ I and I is an ideal), which contradicts the choice of
a as a ‘smallest’ element in I. Hence r = 0, and so x = aq ∈ aR.

A principal ideal domain (abbreviated PID) is an integral domain in which every
ideal is principal. Thus we have shown that every Euclidean domain is a principal ideal
domain.

The converse is actually false: that is, there are PIDs which are not Euclidean.
However, it is not easy to prove this.

The real point of introducing PIDs is that they give us a slightly more general
context in which we can talk about greatest common divisors. To see this, let R be a
PID, and let a,b ∈ R. Then it is easy to see that if I = aR + bR = {ax + by | x,y ∈ R}
then I is an ideal (just check the defining conditions for an ideal), so by assumption
I = dR for some d ∈ R. Now it is quite easy to check that d is a gcd of a and b: first
we have a ∈ I = dR so a = dx for some x ∈ R, that is d|a. Similarly, d|b. Moreover, if
e|a and e|b then e divides every element ax+by of I. In particular, e|d.

Notice that not only does a gcd(a,b) exist, but it can also be written in the form
ax + by with x,y ∈ R. This is what Euclid’s algorithm really does for us, but as just
mentioned, there are some PIDs which are not Euclidean domains, so we get the same
result in a more general context.

Unique factorisation domains. You have probably seen how Euclid’s algorithm can Lecture 20
be used to show that factorisation of (positive) integers into primes is ”essentially
unique”. The essential point is to prove that if a prime p divides a.b then either it
divides a or it divides b (or both). Then by induction, if p divides a product of primes
q1.q2. · · · .qr then p is equal to one of the primes qi. The same idea works more gener-
ally in PIDs, although there are a few extra technicalities.

First we need a definition: in any integral domain R, an element p ∈ R is called
irreducible if it cannot be factorised in a non-trivial way, that is, if p = a.b then either
a or b (but not both!) is a unit. (In particular, note that 0 is not irreducible, and units
are not irreducible.)

Now suppose that R is a PID, and p ∈ R is irreducible. If p|ab, then either p|a, or
(because p is irreducible) gcd(a, p) = 1. In the latter case, since R is a PID, we have
that 1 = ax + py for some x,y ∈ R. Hence, b = abx + pyb, and since p divides both
terms on the RHS, we have p|b. This result can be extended, by an easy induction, to
the following: if R is a PID, and p ∈ R is irreducible, and if p|(q1.q2. · · · .qs), then p|qi
for some i.

Now we can prove that factorisations, if they exist, are unique, in the following
sense: if p1.p2. · · · .pr = q1.q2. · · · .qs, where the pi and q j are all irreducible, then
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r = s, and after re-ordering if necessary, each pi is an associate of the corresponding
qi. For p1 divides q1.q2. · · · .qs, so p1 divides one of the qi. Let us re-order the qi so
that p1 divides q1. Thus q1 = p1u1, and because q1 is irreducible, u1 is a unit. Now
because we are in an integral domain, the cancellation law for multiplication holds,
and we have u1 p2. · · · .pr = q2. · · · .qs. So by induction we can strip off the irreducibles
from both sides, one at a time, until we run out of irreducibles on one side or the
other. At this stage we have a product of irreducibles equal to a unit, which cannot
happen, unless we have run out of irreducibles on the other side as well. Hence r = s
as required.

The only problem that remains is that we have not shown that factorisations ac-
tually exist in a PID! In other words, we have not shown that the process of refining
factorisations of an element ever stops. In fact it does, but the proof is not easy, and
does not work in every integral domain. Suppose we have an element a = a0, and that
we can keep on factorising a0 = a1b1, . . . , an−1 = anbn, . . . , indefinitely. Then we have
a sequence of ideals each contained in the next:

a0R⊂ a1R⊂ a2R⊂ ·· ·

It is easy to see that the union
S

i≥0 aiR is also an ideal (just check the definition), so,
since R is a PID, it is of the form dR for some d. Since d is in this ideal, it is in one
of the aiR. But then ai+1R ⊆ dR ⊆ aiR, which is a contradiction. So the factorising
cannot continue for ever.

This is worth recording in a formal definition: a unique factorisation domain (ab-
breviated UFD) is an integral domain in which

• every element (except 0, units, and irreducibles) can be written as a product of
irreducibles, and

• whenever p1.p2. · · · .pr = q1.q2. · · · .qs, where the pi and q j are all irreducible,
then r = s, and after re-ordering if necessary, each pi is an associate of the cor-
responding qi.

We have shown that every PID is a UFD.

Examples. We started with examples like Z and R[x], and distilled out of them the Lecture 21
definition of a Euclidean domain. We proved that every Euclidean domain is a PID,
and that every PID is a UFD. In particular, Z has unique factorisation, and so does
R[x].

More generally, F [x], the ring of polynomials over F , is a Euclidean domain, pro-
vided F is a field. However, if F is not a field, it need not be. For example, Z[x] is
not even a PID, since we already showed that the ideal of poylnomials with constant
term in 2Z is not a principal ideal. In fact, however, Z[x] is a UFD, though this is
somewhat technical to prove: the idea is to work with factorisations in Q[x], where
they uniqueness condition holds, and then to shuffle the denominators around until
they disappear.
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We showed that the Gaussian integers Z[i] = {a + bi | a,b ∈ Z}, where i2 = −1,
is a Euclidean domain. Similarly, Z[

√
−2] = {a + b

√
−2 | a,b ∈ Z} is a Euclidean

domain. However, Z[
√
−3] is not. For 4 = 2.2 = (1 +

√
−3)(1−

√
−3), and we can

show that all the factors 2, 1±
√
−3 are irreducible, but are not associates of each

other. Thus it is not even a UFD, let alone a PID or a Euclidean domain. Similarly in
Z[
√
−5] we have 6 = 2.3 = (1+

√
−5)(1−

√
−5).

Now consider the ring Z[1
2(1+

√
−3)]. (First check that it is a ring, by checking it is

a subring of the complex numbers.) Now we find 6 units, being±1 and 1
2(±1±

√
−3).

This ring is a Euclidean domain, with the usual Euclidean function d(z) = |z|, or |z|2.
Trying a few factorisations, we find 2 is irreducible, 3 =

√
−3.(−

√
−3), and 5 is

irreducible. Then 7 = (2+
√
−3).(2−

√
−3).

9 Fields
Lecture 22

Recall that a field is a commutative ring with a one, in which every non-zero element
has a (multiplicative) inverse. That is, for any x ∈ F with x 6= 0 there exists y ∈ F
with xy = 1. In other words, every non-zero element is a unit. Since units cannot be
zero-divisors, it follows that every field is an integral domain.

Notation for principal ideals: we have written aR for the ideal {ar | r ∈ R} in any
commutative ring. Sometimes we shall write 〈a〉 or (a) for this (principal) ideal.

Recall that Z/nZ is a field whenever n is prime, but is not even an integral domain
if n is composite. The same is true for arbitrary PIDs in place of Z, and ‘irreducible’
in place of ‘prime’. That is, if R is a PID, and a ∈ R, then R/〈a〉 is a field if and only
if a is irreducible. To prove this, we first see that if a = bc, with neither b nor c being
a unit, then (〈a〉+ b).(〈a〉+ c) = 〈a〉; moreover if 〈a〉+ b = 〈a〉 then b ∈ 〈a〉, so a|b,
but we already have b|a, so a and b are associates, which means c is a unit. This is a
contradiction. Hence we have zero-divisors in R/〈a〉, so it is not a field.

Conversely, if a is irreducible, and 〈a〉+ b 6= 〈a〉, then a does not divide b, so
gcd(a,b) = 1. Hence by the PID property, gcd(a,b) = 1 = ax + by for some x,y ∈ R,
and in the quotient ring we have (〈a〉+b).(〈a〉+y) = 〈a〉+1, which means that 〈a〉+b
is invertible. Hence R/〈a〉 is a field.

Examples. We know that R[X ] is a field. Also, X2 +1 is irreducible, since it cannot
be factorised into real linear factors. So what does the quotient R[X ]/〈X2 + 1〉 look
like? Its elements are the cosets 〈X2 + 1〉+ aX + b, where a,b ∈ R, and these add
together just like linear polynomials. They multiply together by the rule (〈X2 + 1〉+
aX +b).(〈X2 +1〉+cX +d) = 〈X2 +1〉+acX2 +(ad +bc)X +bd = 〈X2 +1〉+(ad +
bc)X +(bd− ac) which is just the same as multiplying the complex numbers ai + b
and ci+d. In other words R[X ]/〈X2 +1〉 ∼= C. The coset 〈X2 +1〉+X plays the role
of i =

√
−1.

Similarly in other cases: the effect is to ‘adjoin a root of the irreducible poly-
nomial’. So for example Q[X ]/〈X2 − 2〉 ∼= Q[

√
2], because the coset 〈X2 − 2〉+ X
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behaves exactly like a square root of 2.
In general, we know that F [X ] is a PID whenever F is a field. We can even take F

to be a finite field, for example F = Z/2Z: let’s use the simplified notation {0,1} for
this field, with the understanding that 1+1 = 0. Now X2 +X +1 is irreducible in F [X ],
and the quotient F [X ]/〈X2 +X +1〉 consists of just four cosets, 〈X2 +X +1〉+aX +b,
which we might as well simplify to 0,1,α,α + 1, where α = 〈X2 + X + 1〉+ X . Thus
we get a field of order 4.

In lecture 23 I think I talked about adjoining a root of an irreducible polynomial
in general (Proposition 2.37 from Prof. Cameron’s notes), and a little bit about finite
fields: the fact that every finite field has order pn, where p is prime and n≥ 1, and that
there is exactly one field of each such order (without proof!). As an example, I showed
that adjoining a root of X2 +X −1 to Z3 gives the same field of order 9 as adjoining a
root of X2 +1.

Field of fractions. We generalise the construction of the field of rational numbers, Lecture 24
Q, from the integral domain of the integers, Z. There is no analogue in general of the
idea of putting a fraction into its lowest terms, so we have to consider all possible ways
of writing a fraction to be equivalent. Of course, we want two fractions a/b and c/d
to be equal if and only ad = bc.

Thus we start by taking an integral domain R, and making the set X of all ordered
pairs (a,b), with a,b ∈ R and b 6= 0. Since (a,b) is going to represent the fraction a/b,
we define an equivalence relation ≡ on X by (a,b) ≡ (c,d) whenever ad = bc. (It is
quite easy to check that this is an equivalence relation: ab = ba implies (a,b)≡ (a,b),
so the relation is reflexive; if ad = bc then cb = da so the relation is symmetric; and if
ad = bc and c f = de then ade = bce so ac f = bce, so c(a f − be) = 0, and therefore
either a f −be = 0, so a f = be, or c = 0, in which case ad = 0 but d 6= 0 so a = 0, and
similarly e = 0, so a f = 0 = be, so again a f = be, and the relation is transitive.)

Now we define the fraction a/b to be the equivalence class containing (a,b). In or-
der to make this set of fractions into a ring, we must define addition and multiplication
by the usual formulas: a/b+ c/d = (ad +bc)/bd and a/b.c/d = ac/bd. In each case
we must check that it is well-defined: that is, if we replace the name a/b of a fraction
by another name a′/b′ of the same fraction (that is, with ab′ = a′b), then we just get
another name for the same fraction in the sum, or product. In other words, we check
that (a′d +b′c)bd = (ad +bc)b′d and a′c.bd = ac.b′d.

With these definitions, we find that 0/1 is the zero, and (−a)/b is the negative of
a/b. Moreover, if a/b 6= 0, then a 6= 0, and b/a is a multiplicative inverse to a/b, since
a/b.b/a = ab/ab = 1/1 = 1. Hence we have constructed a field.

The original integral domain is a subring of this field, if we identify r ∈ R with the
fraction r/1.
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10 Groups
Lecture 25 can be found elsewhere on the course web-page.

Recall the definition of a group, as a set G with a binary operation ?, satisfying the Lecture 26
following:

(G0) Closure: for any g,h ∈ G, we have g?h ∈ G;

(G1) Associativity: (g?h)? k = g? (h? k) for any g,h,k ∈ G;

(G2) Identity: there exists e ∈ G with g? e = e?g = g for every g ∈ G;

(G3) Inverses: for every g ∈ G there exists g−1 ∈ G such that g?g−1 = g−1 ?g = e.

If also (G4) g?h = h?g for all g,h∈G, then G is called commutative or (more usually)
abelian.

Examples. If R is a ring, then R with the operation + is an abelian group: the group
axioms are just the same as the axioms for addition in the ring. The identity element
e is just the 0 of the ring, and the inverse of an element g is the negative −g, since
g+(−g) = 0.

If R is a ring with a one, and U(R) is the set of units of R (that is, the elements
which have a multiplicative inverse), then U(R) forms a group with the operation of
multiplication. The identity element of the group is just the one in the ring, and the
group inverse is the same as the multiplicative inverse in the ring.

To take a special case, suppose F is a field, and let R = M2(F) be the ring of 2×2
matrices with entries from F . Then the units of R are just the matrices with non-zero
determinant. These form a group under matrix multiplication, called the general linear
group (of degree 2, over F). Write GL2(F) for this group.

To take an even more special case, let F = Z2 = {0,1} be the field of order 2. Then
there are just 6 invertible 2×2 matrices, and we have

GL2(Z2) = {
(

1 0
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
,

(
1 1
0 1

)
}.

You can check that all these elements are their own inverses, except that(
0 1
1 1

)
.

(
1 1
1 0

)
=

(
1 0
0 1

)
,

so that these two matrices are inverses of each other.
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Properties of groups. Many of these are proved in exactly the same way as for rings.
For example, there is only one identity element: if e and e′ are identity elements, then
e ? e′ = e because e′ is an identity element, and e ? e′ = e′ because e is an identity
element, so e = e′.

Similarly, if g has two inverses, say h and k, then g?h = h?g = e and g?k = k?g =
e so h ? (g ? k) = h ? e = h and (h ? g)? k = e ? k = k, so by the associative law, h = k.
The cancellation laws are similar: if g?h = g?k, then h = g−1 ?g?h = g−1 ?g?k = k,
and similary for the other cancellation law.

The inverse of g?h is h−1 ?g−1, as we already saw in the case of units in rings.

Notation. Various different notations for groups are used. General groups are usually Lecture 27
written with the operation written g.h or just gh, and the identity element is then usually
written 1. This is in conformity with the notation for multiplication in rings and fields.
Abelian groups are often written with the operation written g + h, in conformity with
the notation for the additive group of a ring: in this case, the identity element is always
written 0, and the additive inverse of g is written −g instead of g−1.

The order of a group G is just the number of elements it has, that is |G|.
The order of an element g ∈ G is defined in a completely different way: it is the

smallest positive integer n such that gn = 1. Here gn = g.g.g. · · · .g with n factors.
If we define g−n = (g−1)n then it should be clear that g−n.gn = 1. More generally
gn.gk = gn+k, where n,k ∈ Z, and can be negative.

We will see in a moment that these two concepts of ‘order’ are closely related. First
we need:

Subgroups. A subgroup of a group G is a subset H which is a group in its own right
(with the same operation). That is, it must contain 1, and whenever g,h ∈ H, we must
have the product gh ∈ H and the inverse g−1 ∈ H.

A possibly slightly simpler test is the following: H ⊆ G is a subgroup if (and only
if) H is non-empty, and for all g,h ∈ H, we have gh−1 ∈ H. The ‘only if’ part is not
really used, but is easy: if H is a subgroup, then 1 ∈ H so H is non-empty; and if
g,h ∈ H then h−1 ∈ H, and then g.h−1 ∈ H. The ‘if’ part is what we shall use:

If H is non-empty, say g ∈ H, then by assumption (taking h = g) we have 1 =
gg−1 ∈ H. Next, for any x ∈ H, we have (taking g = 1, h = x) that x−1 = 1.x−1 ∈ H.
Finally, if x,y ∈ H, then y−1 ∈ H, and therefore (taking g = x,h = y−1) we have xy =
x(y−1)−1)∈H. (Note that this last step requires the uniqueness of inverses: both y and
(y−1)−1 are inverses of y−1, so are equal.)

Cyclic groups. If g ∈ G is an element of order n, then I claim that {1 = g0,g =
g1,g2, . . . ,gn−1} is a subgroup of G, of order n. To check this, first observe that all
its elements are distinct: for if gk = gl with 0 ≤ k < l ≤ n− 1 then gl−k = 1 and
1≤ k− l ≤ n−1, contradicting the assumption that the order of g is n.
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Now check the subgroup conditions: certainly the set is non-empty, and if gk,gl are
elements of this set, then either k ≥ l, in which case gk.(gl)−1 = gk−l , and 0≤ k− l ≤
n− 1; or k < l, in which case gk.(gl)−1 = gk−l = gk−l+n, and 1− n ≤ k− l ≤ −1 so
1≤ k− l +n≤ n−1. Hence it is a subgroup, as claimed.

Isomorphism. Notice that in a cyclic group, all that matters is how the exponents k
in gk behave: when we multiply group elements we add the exponents, modulo n. So
the exponents behave like Zn under addition modulo n. Thus the cyclic group is really
the same as (we say, isomorphic to) the additive group of integers modulo n.

More formally, an isomorphism between two groups G and H is a bijection f :
G → H such that f (gh) = f (g) f (h) for all g,h ∈ G. Notice that this implies that
f (1) = f (1.1) = f (1). f (1) so f (1) = 1; and then 1 = f (1) = f (g.g−1) = f (g). f (g−1),
so by uniqueness of inverses, we have f (g−1) = ( f (g))−1. In other words, all the group
structure is preserved by the function f .

Subgroups of cyclic groups. Since the cyclic group Cn of order n is isomorphic to Lecture 28
the additive group of integers modulo n, we may as well use this more familiar example
in order to illustrate the subgroup structure. All the basic theorems depend on Euclid’s
algorithm (or at least the division algorithm), just as they do in the ring theory part of
this course. Indeed, we are almost proving the same theorems again.

So let Zn = {0,1,2, . . . ,n−1} be the additive group of integers modulo n, so that
2 = 1 + 1, 3 = 1 + 1 + 1 etc., and −1 = n− 1 and so on. If k|n, say n = kl, then let
H = {0,k,2k, . . . ,(l−1)k}. It is easy to check that H is a subgroup of Zn, and that it
has order l. In this way we get a subgroup of order l, for each divisor l of n.

Conversely, suppose that H is any subgroup of Zn, and suppose that k is the smallest
positive integer such that k ∈ H. We show that H = {0,k,2k, . . . ,(l − 1)k}, where
kl = n. First we need to show that k|n: if not, then n = kq + r with 0 ≤ r < k, and
r =−kq∈H (remember we are working modulo n), which is a contradiction. Certainly
H contains {0,k,2k, . . . ,(l−1)k}, so suppose that b ∈ H is some other element. Then
b = kq + r for some 0 ≤ r < k, and r = b− kq ∈ H, so r = 0. Hence b = kq, and
therefore H = {0,k,2k, . . . ,(l−1)k} as claimed.

Right cosets. We generalise the idea of cosets in rings: in the situation where we had
a subring S of a ring R (in fact, we did not even need S to be closed under multiplica-
tion) we defined an equivalence relation ≡S on R by a ≡S b if and only if a− b ∈ S.
We do the same thing here, except that we replace the additive notation by the multi-
plicative notation:

Suppose H is a subgroup of a group G, and define a relation ≡H on G by g≡H h if
and only if gh−1 ∈ H. We check that this is an equivalence relation:

• 1 = gg−1 ∈ H for all g ∈ G, so the relation is reflexive;
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• if gh−1 ∈ H then hg−1 = (h−1)−1g−1 = (gh−1)−1 ∈ H, so the relation is sym-
metric;

• if gh−1 ∈ H and hk−1 ∈ H, then gk−1 = (gh−1).(hk−1) ∈ H, so the relation is
transitive.

The equivalence classes are called the right cosets of H in G. The equivalence class
containing g is the set of all x such that xg−1 ∈ H, that is the set of x = hg, where
h ∈ H. Thus we write Hg = {hg | h ∈ H} for this right coset.

Left cosets. In a similar way we can define left cosets gH = {gh | h ∈ H}, using the
equivalence relation defined by g−1h ∈ H. Sometimes the left cosets are the same as
the right cosets, but often they are not.

Lagrange’s Theorem. It is fairly obvious that every coset of H in G has the same Lecture 29
number of elements, because to each element h ∈ H there is a corresponding element
hg ∈ Hg. More formally, the map φ : H → Hg defined by φ(h) = hg is a bijection,
because it has an inverse map ψ : Hg→H defined by ψ(x) = xg−1. (Proof: φ(ψ(x)) =
φ(xg−1) = (xg−1)g = x and ψ(φ(h)) = ψ(hg) = (hg)g−1 = h.)

Now G is partitioned into the right cosets of H, since these are the equivalence
classes of an equivalence relation. Hence the total number of elements in G is equal to
the number of right cosets times the number of elements (|H|) in each. In other words,
the number of right cosets of H in G is |G|/|H|, and since this must be a positive
integer, we have that |H| divides |G|.

As an immediate corollary, we see that the order of any element g ∈G also divides
|G|, since it is equal to the order of the subgroup 〈g〉= {1,g,g2, . . .} of G.

Of course, in the proof we could equally well have used left cosets. In fact, there
is a bijection φ between the set of left cosets and the set of right cosets defined by
φ(gH) = Hg−1. To prove this formally, we first need to check that this map is well-
defined: if xH = yH then x ∈ yH so x = yh for some h ∈ H, and therefore x−1 =
h−1y−1 ∈ Hy−1, so Hx−1 = Hy−1. This argument in reverse shows that φ is injective,
and it is obvious that φ is surjective. Hence φ is a bijection, as required.

Homomorphisms. We already saw the definition of an isomorphism of groups: a
bijection θ which preserves the group multiplication, in the sense that θ(xy) = θ(x)θ(y)
for all x,y. Similarly, a homomorphism of groups is a function θ : G → H, where G
and H are groups, such that θ(xy) = θ(x)θ(y) for all x,y ∈ G.

It follows easily that θ preserves the identity element, and inverses: that is, θ(1G) =
1H and θ(g−1) = θ(g)−1. Proof: 1H .θ(1G) = θ(1G) = θ(1G.1G) = θ(1G).θ(1G) so by
cancellation, 1H = θ(1G). Also 1H = θ(1G) = θ(g.g−1) = θ(g).θ(g−1), so θ(g−1) =
θ(g)−1.

Now if θ : G→ H is a group homomorphism, then the image of θ is ∈ θ = {θ(g) | Lecture 30
g ∈ G}, and the kernel of θ is ker(θ) = {g ∈ G | θ(g) = 1}. Notice that this definition
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of kernel is subtly different from the definition of the kernel of a ring homomorphism!
One way of explaining the reason for this is that we want the image of the kernel
(which consists of a single element) to be a subgroup of H, which forces it to be {1H}.
Similarly, in the case of rings, we want the image of the kernel (of a ring homomorphim
φ : R→ S) to be a subring of S, which forces it to be {0S}.

Indeed, if θ : G → H, then im(θ) is always a subgroup of H, since if a,b ∈ im(φ),
then a = θ(x) and b = θ(y) for some x,y ∈ G, and we have ab−1 = θ(x)θ(y)−1 =
θ(x)θ(y−1) = θ(xy−1) ∈ im(θ). Similarly, ker(θ) is a subgroup of G, since if x,y ∈
ker(θ) then θ(x) = θ(y) = 1, so θ(y−1) = θ(y)−1 = 1−1 = 1, and then θ(xy−1) =
θ(x)θ(y−1) = 1.1 = 1, so xy−1 ∈ ker(θ).

Normal subgroups. A subgroup H of a group G is called normal if the left and
right cosets of H in G are the same, that is, if Hg = gH for every g ∈ G. The normal
subgroups play the same role in group theory that the ideals play in ring theory.
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