Finite simple groups

Exercise 1. Show that if x, y and z are three mutually orthogonal purely imaginary quaternions of norm 1 , then $x y= \pm z$.

Exercise 2. Show that in a Moufang loop $(x y) x=x(y x)$. Show also that $(x x) y=x(x y)$ and $y(x x)=(y x) x$. Deduce that any two-generator Moufang loop is a group.

Exercise 3. Verify that the Moufang identities $(x y)(z x)=(x(y z)) x$ and $x(y(x z))=$ $((x y) x) z$ and $((x y) z) x=x(y(z x))$ hold in the octonion algebra generated by i_{0}, \ldots, i_{6} over any field.
[Hint: use the reduction to the case $y=i_{0}, z=i_{1}$, sketched in the notes.]
Exercise 4. Prove that if q is odd then $G_{2}(q)$ is simple.
Exercise 5. Show that the maps r and s taking $\left(x_{1}, \ldots, x_{8}\right)$ to $\left(-x_{1},-x_{3},-x_{2}, x_{4}, x_{5},-x_{7},-x_{6},-x_{8}\right)$ and $\left(x_{2}, x_{1},-x_{6}, x_{5}, x_{4},-x_{3}, x_{8}, x_{7}\right)$, preserve the multiplication table of the split octonion algebra given in the notes.

EXERCISE 6. Show that in any associative algebra, the Jordan product $a \circ b$ defined by $a \circ b=\frac{1}{2}(a b+b a)$ satisfies the Jordan identity $((a \circ a) \circ b) \circ a=(a \circ a) \circ(a \circ b)$.

Exercise 7. Verify that the Albert algebra as defined in the notes is closed under Jordan multiplication. Specifically,

$$
(a, b, c \mid A, B, C) \circ(p, q, r \mid P, Q, R)=(x, y, z \mid X, Y, Z)
$$

where $x=a p+\operatorname{Re}(C \bar{R}+\bar{B} Q)$ and

$$
X=\frac{1}{2}(b+c) P+\frac{1}{2}(q+r) A+\frac{1}{2}(\overline{B R}+\overline{Q C}) .
$$

Exercise 8. Show that if t is a symmetric trilinear form, and $c(x)=t(x, x, x)$, then $24 t(x, y, z)=c(x+y+z)+c(x-y-z)+c(-x+y-z)+c(-x-y+z)$.

Show also that $6 t(x, y, z)=c(x+y+z)-c(x+y)-c(y+z)-c(z+x)+$ $c(x)+c(y)+c(z)$.

Exercise 9. Show that the map $(a, b, c \mid A, B, C) \mapsto(a, b, c \mid u A, B u, \bar{u} C \bar{u})$, where u is an octonion of norm 1, preserves the Jordan product.

