Finite simple groups

Problem sheet 3

EXERCISE 1. Show that if f is any bilinear or sesquilinear form on a vector space V, and $S^{\perp} = \{v \in V \mid f(u, v) = 0 \text{ for all } u \in S\}$, then S^{\perp} is a subspace of V.

EXERCISE 2. Show that if f is a non-singular bilinear or sesquilinear form, and U is a subspace of V, then $(U^{\perp})^{\perp} = U$ and $\dim(U) + \dim(U^{\perp}) = \dim(V)$. Deduce that if $U \cap U^{\perp} = 0$ then $V = U \oplus U^{\perp}$.

EXERCISE 3. Let f be a non-singular alternating form on a vector space V of dimension 2m over \mathbb{F}_q . If $k \leq m$, how many non-singular subspaces of dimension 2k are there in V? How many totally isotropic subspaces of dimension k are there?

EXERCISE 4. Show that the symplectic transvections $T_v(\lambda) : x \mapsto x + \lambda f(x, v)v$ preserve the alternating bilinear form f.

EXERCISE 5. Verify that the symplectic transvections are commutators in $\text{Sp}_4(3)$ and $\text{Sp}_6(2)$.

EXERCISE 6. Show that the unitary transvections $T_v(\lambda) : x \mapsto x + \lambda f(x, v)v$ preserve the non-singular conjugate-symmetric sesquilinear form f if and only if $\lambda^{q-1} = -1$.

EXERCISE 7. Let V be a 3-dimensional space over $\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}$, and let f be a non-singular conjugate-symmetric sesquilinear form on V. Show that there are 21 one-dimensional subspaces of V, of which 9 contain isotropic vectors and 12 contain non-isotropic vectors.

EXERCISE 8. From the previous question we get an action of $GU_3(2)$ (and also of $PGU_3(2)$) on the set of nine isotropic 1-spaces in V. Show that this action is 2-transitive, and that $|PGU_3(2)| = 216$.

Deduce (from the O'Nan–Scott theorem, or otherwise) that the resulting subgroup of A_9 is the 'affine' subgroup $(C_3 \times C_3)$:SL₂(3).

EXERCISE 9. Show that the 2-dimensional orthogonal groups are dihedral; specifically: $O_2^+(q) \cong D_{2(q-1)}$ and $O_2^-(q) \cong D_{2(q+1)}$, both for q odd and q even.