Finite simple groups

Exercise 1. Show that if f is any bilinear or sesquilinear form on a vector space V, and $S^{\perp}=\{v \in V \mid f(u, v)=0$ for all $u \in S\}$, then S^{\perp} is a subspace of V.

EXERCISE 2. Show that if f is a non-singular bilinear or sesquilinear form, and U is a subspace of V, then $\left(U^{\perp}\right)^{\perp}=U$ and $\operatorname{dim}(U)+\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}(V)$. Deduce that if $U \cap U^{\perp}=0$ then $V=U \oplus U^{\perp}$.

Exercise 3. Let f be a non-singular alternating form on a vector space V of dimension $2 m$ over \mathbb{F}_{q}. If $k \leq m$, how many non-singular subspaces of dimension $2 k$ are there in V ? How many totally isotropic subspaces of dimension k are there?

Exercise 4. Show that the symplectic transvections $T_{v}(\lambda): x \mapsto x+\lambda f(x, v) v$ preserve the alternating bilinear form f.

Exercise 5. Verify that the symplectic transvections are commutators in $\mathrm{Sp}_{4}(3)$ and $\mathrm{Sp}_{6}(2)$.

EXERCISE 6. Show that the unitary transvections $T_{v}(\lambda): x \mapsto x+\lambda f(x, v) v$ preserve the non-singular conjugate-symmetric sesquilinear form f if and only if $\lambda^{q-1}=-1$.

Exercise 7. Let V be a 3-dimensional space over $\mathbb{F}_{4}=\left\{0,1, \omega, \omega^{2}\right\}$, and let f be a non-singular conjugate-symmetric sesquilinear form on V. Show that there are 21 one-dimensional subspaces of V, of which 9 contain isotropic vectors and 12 contain non-isotropic vectors.

Exercise 8. From the previous question we get an action of $\mathrm{GU}_{3}(2)$ (and also of $\mathrm{PGU}_{3}(2)$) on the set of nine isotropic 1-spaces in V. Show that this action is 2 -transitive, and that $\left|\mathrm{PGU}_{3}(2)\right|=216$.

Deduce (from the O'Nan-Scott theorem, or otherwise) that the resulting subgroup of A_{9} is the 'affine' subgroup $\left(C_{3} \times C_{3}\right): \mathrm{SL}_{2}(3)$.

Exercise 9. Show that the 2-dimensional orthogonal groups are dihedral; specifically: $\mathrm{O}_{2}^{+}(q) \cong D_{2(q-1)}$ and $\mathrm{O}_{2}^{-}(q) \cong D_{2(q+1)}$, both for q odd and q even.

