Finite simple groups

Problem sheet 2

EXERCISE 1. Compute the addition and multiplication tables for the fields

- 1. $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2 + x + 1);$
- 2. $\mathbb{F}_8 = \mathbb{F}_2[x]/(x^3 + x + 1);$
- 3. $\mathbb{F}_9 = \mathbb{F}_3[x]/(x^2+1)$.

EXERCISE 2. Let $G = GL_n(q)$. Prove that $Z(G) = \{\lambda I_n \mid 0 \neq \lambda \in \mathbb{F}_q\}$, where I_n is the $n \times n$ identity matrix.

EXERCISE 3. Prove that $GL_2(2) \cong S_3$.

EXERCISE 4. Prove that $PGL_2(3) \cong S_4$ and $PSL_2(3) \cong A_4$.

EXERCISE 5. Prove the following generalisation of Iwasawa'a Lemma: Suppose that G is a finite perfect group acting faithfully and primitively on a set Ω , and suppose that the stabilizer of a point has a normal soluble subgroup S, whose conjugates generate G. Then G is simple.

EXERCISE 6. Use Iwasawa's Lemma to prove simplicity of the alternating groups A_n for $n \ge 5$. Where does your proof break down for $n \le 4$? [Hint: use the action of A_n on unordered triples from $\{1, 2, ..., n\}$.]

EXERCISE 7. Let A be a $k \times k$ matrix, B a $k \times m$ matrix and C an $m \times m$ matrix over a field F. Show that det $\begin{pmatrix} A & 0 \\ B & C \end{pmatrix} = \det A \cdot \det C$.

Deduce that the group G of invertible matrices of the shape $\begin{pmatrix} A & 0 \\ B & C \end{pmatrix}$ has a normal subgroup $U = \left\{ \begin{pmatrix} I & 0 \\ B & I \end{pmatrix} \right\} \cong F^{km}$ and a subgroup $L = \left\{ \begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix} \right\} \cong$ GL_k(F) × GL_m(F).

Show also that this group is a semidirect product of U and L.

EXERCISE 8. How many k-dimensional subspaces are there in a vector space of dimension n over the field of q elements?

EXERCISE 9. Prove that the stabilizer in $\operatorname{GL}_n(q)$ of a k-dimensional subspace of \mathbb{F}_q^n is a maximal subgroup of $\operatorname{GL}_n(q)$.

EXERCISE 10. Show that in $V = \mathbb{F}_4^3$ there are 21 1-spaces ('points') and 21 2-spaces ('lines'), that every line contains 5 points and that every point lies in 5 lines.

EXERCISE 11. Prove the equivalence of the following alternative definitions of the Frattini subgroup $\Phi(G)$.

- $\Phi(G)$ is the intersection of all the maximal subgroups of G.
- Φ(G) is the set of non-generators of G, where x ∈ G is a non-generator if for all subsets X ⊆ G, ⟨X⟩ = G ⇒ ⟨X \ {x}⟩ = G.

EXERCISE 12. Prove that $\Phi(G)$ is nilpotent.

EXERCISE 13. Prove that if G is nilpotent then $\Phi(G) \ge G'$.