Finite simple groups

Exercise 1. Compute the addition and multiplication tables for the fields

1. $\mathbb{F}_{4}=\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right) ;$
2. $\mathbb{F}_{8}=\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$;
3. $\mathbb{F}_{9}=\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$.

Exercise 2. Let $G=\mathrm{GL}_{n}(q)$. Prove that $Z(G)=\left\{\lambda I_{n} \mid 0 \neq \lambda \in \mathbb{F}_{q}\right\}$, where I_{n} is the $n \times n$ identity matrix.

Exercise 3. Prove that $\mathrm{GL}_{2}(2) \cong S_{3}$.
ExErcise 4. Prove that $\mathrm{PGL}_{2}(3) \cong S_{4}$ and $\mathrm{PSL}_{2}(3) \cong A_{4}$.
Exercise 5. Prove the following generalisation of Iwasawa'a Lemma: Suppose that G is a finite perfect group acting faithfully and primitively on a set Ω, and suppose that the stabilizer of a point has a normal soluble subgroup S, whose conjugates generate G. Then G is simple.

Exercise 6. Use Iwasawa's Lemma to prove simplicity of the alternating groups A_{n} for $n \geq 5$. Where does your proof break down for $n \leq 4$?
[Hint: use the action of A_{n} on unordered triples from $\{1,2, \ldots, n\}$.]
Exercise 7. Let A be $a k \times k$ matrix, $B a k \times m$ matrix and C an $m \times m$ matrix over a field F. Show that $\operatorname{det}\left(\begin{array}{cc}A & 0 \\ B & C\end{array}\right)=\operatorname{det} A \cdot \operatorname{det} C$.

Deduce that the group G of invertible matrices of the shape $\left(\begin{array}{ll}A & 0 \\ B & C\end{array}\right)$ has a normal subgroup $U=\left\{\left(\begin{array}{cc}I & 0 \\ B & I\end{array}\right)\right\} \cong F^{k m}$ and a subgroup $L=\left\{\left(\begin{array}{cc}A & 0 \\ 0 & C\end{array}\right)\right\} \cong$ $\mathrm{GL}_{k}(F) \times \mathrm{GL}_{m}(F)$.

Show also that this group is a semidirect product of U and L.
Exercise 8. How many k-dimensional subspaces are there in a vector space of dimension n over the field of q elements?

EXERCISE 9. Prove that the stabilizer in $\mathrm{GL}_{n}(q)$ of a k-dimensional subspace of $\mathbb{F}_{q}{ }^{n}$ is a maximal subgroup of $\mathrm{GL}_{n}(q)$.

Exercise 10. Show that in $V=\mathbb{F}_{4}^{3}$ there are 211 -spaces ('points') and 21 2spaces ('lines'), that every line contains 5 points and that every point lies in 5 lines.

Exercise 11. Prove the equivalence of the following alternative definitions of the Frattini subgroup $\Phi(G)$.

- $\Phi(G)$ is the intersection of all the maximal subgroups of G.
- $\Phi(G)$ is the set of non-generators of G, where $x \in G$ is a non-generator if for all subsets $X \subseteq G,\langle X\rangle=G \Rightarrow\langle X \backslash\{x\}\rangle=G$.

Exercise 12. Prove that $\Phi(G)$ is nilpotent.
Exercise 13. Prove that if G is nilpotent then $\Phi(G) \geq G^{\prime}$.

