Lecture 2: Linear groups

Robert A. Wilson

Queen Mary, University of London
LTCC, 13th October 2008

Classical groups

The six families of classical finite simple groups are all essentially matrix groups over finite fields:

- the projective special linear groups $P S L_{n}(q)$;
- the projective special unitary group $P S U_{n}(q)$;
- the projective symplectic groups $P S p_{2 n}(q)$;
- three families of orthogonal groups
- $P \Omega_{2 n+1}(q)$;
- $P \Omega_{2 n}^{+}(q)$;
- $P \Omega_{2 n}^{-}(q)$

INTRODUCTION

More finite fields

- In any finite field F, the subfield F_{0} generated by 1 has prime order, p.
- F is a vector space, of dimension d, over F_{0}, so has p^{d} elements.
- In fact, there is exactly one field of each such order p^{d}.
- To make such a field, pick an irreducible polynomial f of degree d, and construct the quotient $F_{0}[x] /(f)$ of the polynomial ring.
- Example: $p=2, f(x)=x^{2}+x+1$, gives a field of order 4 as $F_{4}=\{0,1, \omega, \bar{\omega}\}$ with $\omega^{2}=\bar{\omega}$ and $\omega+\bar{\omega}=1$.

The general linear group

- $G L_{n}(q)$ is the group of all invertible $n \times n$ matrices with entries in the field $F=\mathbb{F}_{q}$ of order q.
- The scalar matrices form a normal subgroup Z of order $q-1$.
- the projective general linear group $P G L_{n}(q)=G L_{n}(q) / Z$.
- The determinant map det : $G L_{n}(q) \rightarrow F^{*}$ is a group homomorphism.
- Its kernel is the special linear group $S L_{n}(q)$.
- The projective special linear group $P S L_{n}(q)=S L_{n}(q) /\left(Z \cap S L_{n}(q)\right)$.

LINEAR GROUPS

The orders of the linear groups

- How many invertible matrices are there?
- Choose each row to be linearly independent of the previous rows.
- The first i rows span an i-dimensional space, which has q^{i} vectors.
- Therefore there are $q^{n}-q^{i}$ choices for the $(i+1)$ th row.
- Hence $\left|G L_{n}(q)\right|=\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-1}\right)$.
- $\left|S L_{n}(q)\right|=\left|P G L_{n}(q)\right|=\left|G L_{n}(q)\right| /(q-1)$.
- $\left|P S L_{n}(q)\right|=\left|S L_{n}(q)\right| / \operatorname{gcd}(n, q-1)$.

An example: $G L_{2}(2)$

More examples

- $F=\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$ with $1+1=0$.
- The 2-dimensional vector space F^{2} has four vectors, $(0,0),(0,1),(1,0),(1,1)$.
- The first row can be any of the 3 non-zero vectors.
- The second row can be any of the remaining 2 non-zero vectors.
- Hence $\left|G L_{2}(2)\right|=6$.
- $G L_{2}(2)$ acts on the vector space by permuting the three non-zero vectors in all possible ways.
- Hence $G L_{2}(2) \cong S_{3}$.

Iwasawa's Lemma

The easiest way to prove simplicity of $P S L_{n}(q)$ is to use:
Theorem (lwasawa's lemma)
If G is a finite perfect group acting faithfully and primitively on a set Ω, and the point stabilizer H has a normal abelian subgroup A whose conjugates generate G, then G is simple.

- $P G L_{2}(3) \cong S_{4}$, permuting the four 1-dimensional subspaces;
- $P S L_{2}(3) \cong A_{4}$;
- $P S L_{2}(4) \cong A_{5}$, permuting the five 1-dimensional subspaces;
- $P S L_{2}(5) \cong A_{5}$, and $P G L_{2}(5) \cong S_{5}$.
- In fact, $P S L_{n}(q)$ is a simple group except for the cases $P S L_{2}(2) \cong S_{3}$ and $P S L_{2}(3) \cong A_{4}$.

Proof of Iwasawa's Lemma

- Otherwise, choose a normal subgroup K with $1<K<G$.
- Choose a point stabilizer H with $K \not \leq H$.
- Hence $G=H K$ since H is maximal.
- Any $g \in G$ can be written $g=h k$.
- Any conjugate of A is $g^{-1} A g=k^{-1} h^{-1} A h k=k^{-1} A k \leq A K$.
- Therefore $G=A K$.
- Now $G / K=A K / K \cong A /(A \cap K)$ is abelian.
- But G is perfect, so has no nontrivial abelian quotients.
- Contradiction.

Simplicity of $P S L_{n}(q)$

Simplicity of $P S L_{n}(q)$, cont.

- Let $P S L_{n}(q)$ act on the 1-dimensional subspaces of F^{n}.
- This action is 2-transitive, so primitive.
- The stabilizer of the point $\langle(1,0,0, \ldots, 0)\rangle$ consists (modulo scalars) of matrices $\left(\begin{array}{ll}\lambda & 0 \\ v & M\end{array}\right)$.
- It has a normal abelian subgroup consisting of matrices $\left(\begin{array}{cc}1 & 0 \\ v & I_{n-1}\end{array}\right)$.
- These matrices encode elementary row operations, and you learnt in linear algebra that every matrix of determinant 1 is a product of such matrices.
- To prove that $P S L_{n}(q)$ is perfect it suffices to prove that these matrices (transvections) are commutators.
- If $n \geq 3$ observe that

$$
\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & x & 1
\end{array}\right)\right]=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-x & 0 & 1
\end{array}\right)
$$

- If $q \geq 4$ then \mathbb{F}_{q} has an element x with $x^{3} \neq x$, so

$$
\left[\left(\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right),\left(\begin{array}{cc}
x & 0 \\
0 & x^{-1}
\end{array}\right)\right]=\left(\begin{array}{cc}
1 & 0 \\
y\left(x^{2}-1\right) & 1
\end{array}\right)
$$

- Hence by Iwasawa's Lemma, $P S L_{n}(q)$ is simple whenever $n \geq 3$ or $q \geq 4$.

COFFEE BREAK

Subspace stabilizers

- The stabilizer of a subspace of dimension k looks like this:

$$
\begin{gathered}
k \rightarrow \\
n-k \rightarrow
\end{gathered}\left(\begin{array}{cc}
G L_{k}(q) & 0 \\
q^{k(n-k)} & G L_{n-k}(q)
\end{array}\right)
$$

- The subgroup of matrices of shape $\left(\begin{array}{cc}I_{k} & 0 \\ A & I_{n-k}\end{array}\right)$ is a normal abelian subgroup.
- The quotient by this subgroup is isomorphic to $G L_{k}(q) \times G L_{n-k}(q)$.

Tensor products

If $A=\left(a_{i j}\right) \in G L_{k}(q)$ and $B=\left(b_{i j}\right) \in G L_{m}(q)$ then the following matrix is in $G L_{k m}(q)$:

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 k} B \\
a_{21} B & a_{22} B & \cdots & a_{2 k} B \\
\vdots & & & \\
a_{k 1} B & a_{k 2} B & \cdots & a_{k k} B
\end{array}\right)
$$

If we multiply A by a scalar λ, and B by the inverse λ^{-1}, then this matrix does not change.
Factoring out by the scalars we have

$$
P G L_{k}(q) \times P G L_{m}(q)<P G L_{k m}(q)
$$

Suppose $V=V_{1} \oplus \cdots \oplus V_{k}$ is a direct sum of k subspaces each of dimension m.

- The stabilizer of this decomposition of the vector space has a normal subgroup $G L_{m}(q) \times \cdots \times G L_{m}(q)$ acting on V_{1}, \ldots, V_{k} separately.
- There is also a subgroup S_{k} permuting these k subspaces.
- Together these generate a wreath product $G L_{m}(q)$) S_{k}.

Wreathed tensor products

Repeating this construction with m copies of $G L_{k}(q)$ we get

$$
P G L_{k}(q) \times \cdots \times P G L_{k}(q)<P G L_{k^{m}}(q)
$$

We can also permute the m copies of $P G L_{k}(q)$ with a copy of S_{m}.
Together these give a wreath product

$$
P G L_{k}(q) \imath S_{m}<P G L_{k^{m}}(q)
$$

Extraspecial groups

Suppose r is an odd prime, and α is an element of order r in the field F (so r is a divisor of $|F|-1$).

- Let R be the group generated by the $r \times r$ matrices

$$
\left(\begin{array}{ccccc}
\alpha & 0 & 0 & \cdots & 0 \\
0 & \alpha^{2} & 0 & \cdots & 0 \\
\vdots & & & & \\
0 & 0 & & \cdots & 0 \\
0 & 0 & & \cdots & \alpha^{r-1}
\end{array}\right) \text { and }\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & & & & \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

- Then R is non-abelian of order r^{3}
- Taking the tensor product of k copies of R gives an extraspecial group of order $r^{1+2 k}$ acting on a space of dimension r^{k}.

Almost quasi-simple groups

- A group G is quasi-simple if $G=G^{\prime}$ and $G / Z(G)$ is simple
- Example: $S L_{n}(q)$ is quasi-simple except for $S L_{2}(2)$ and $S L_{2}(3)$
- A group G is almost quasi-simple (for us - this is not entirely standard terminology) if G / Z is almost simple, where Z is a suitable group of scalar matrices.

Extraspecial groups, cont.

A slightly different construction is required for the prime 2

- Both D_{8} and Q_{8} have 2-dimensional representations
- Tensoring them together gives extraspecial groups of order $2^{1+2 k}$, with representations of degree 2^{k}
- In fact $D_{8} \otimes D_{8}=Q_{8} \otimes Q_{8}$, so there are just two extraspecial groups of each order.
- If the field contains elements of order 4, you can adjoin these scalars to make a bigger group which contains both extraspecial groups.

The Aschbacher-Dynkin theorem

Every subgroup of $G L_{n}(q)$ which does not contain $S L_{n}(q)$ is contained in the stabilizer of one of the following

- a subspace of dimension k
- a direct sum of k subspaces of dimension m, where $n=k m$
- a tensor product $F^{k} \otimes F^{m}$, where $n=k m$
- a tensor product of m copies of F^{k}, where $n=k^{m}$
- an extraspecial group $r^{1+2 k}$, where $n=r^{k}$
- an almost quasi-simple subgroup

THE END

