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INTRODUCTION

Simple groups

I A subgroup H of a group G is normal if the left and
right cosets are equal, Hg = gH for all g ∈ G.

I A group G is simple if it has exactly two normal
subgroups, 1 and G.

I The abelian simple groups are exactly the cyclic
groups of prime order, Cp.

I The non-abelian simple groups are much harder to
classify: 50 years of hard work by many people, c.
1955–2005, led to

I CFSG: the Classification Theorem for Finite Simple
Groups.

CFSG

Every non-abelian finite simple group is one of the
following

I an alternating group An, n ≥ 5: the set of even
permutations on n points;

I a classical group over a finite field: six families (linear,
unitary, symplectic, and three families of orthogonal
groups);

I an exceptional group of Lie type: ten families;
I 26 sporadic simple groups, ranging in size from M11

of order 7920 to the Monster of order nearly 1054.

Our aim is to understand the statement of this theorem in
more detail.



Practicalities

I The course web-site is accessible from the LTCC site
http://www.ltcc.ac.uk/, or directly at
http://www.maths.qmul.ac.uk/˜raw/FSG/. It will
contain lecture notes, exercises, solutions, links to
bacground reading, further reading, etc.

I You are encouraged to print off and read the lecture
notes, which are more detailed than the lectures
themselves.

ALTERNATING GROUPS

Permutations

I A permutation on a set Ω is a bijection from Ω to itself.
I The set of permutations on Ω forms a group, called

the symmetric group on Ω.
I A transposition is a permutation which swaps two

points and fixes all the rest.
I Every permutation can be written as a product of

transpositions.
I The identity element cannot be written as the product

of an odd number of transpositions.
I Hence no element can be written both as an even

product and an odd product.

Even permutations

I A permutation is even if it can be written as a product
of an even number of transpositions, and odd
otherwise.

I The even permutations form a subgroup called the
alternating group, and the odd permutations form a
coset of this subgroup.

I In particular, the alternating group has index 2 in the
symmetric group.

I So if Ω has n points, the symmetric group Sn has
order n!, and the alternating group has order n!/2.



Transitivity

I Write aπ for the image of a ∈ Ω under the permutation
π.

I The orbit of a ∈ Ω under the group H is {aπ | π ∈ H}.
I The orbits under H form a partition of Ω.
I If there is only one orbit (Ω itself), then H is transitive.
I For k ≥ 1, a group H is k -transitive if for every set of

k distinct elements a1, . . . , ak ∈ Ω and every set of k
disctinct elements b1, . . . , bk ∈ Ω, there is a
permutation π ∈ H with ai

π = bi for all i .

Primitivity

I A block system for H is a partition of Ω preserved by
H.

I The partitions {Ω} and {{a} | a ∈ Ω} are trivial block
systems.

I If H preserves a non-trivial block system (called a
system of imprimitivity), then H is called imprimitive.

I Otherwise H is primitive.
I If H is primitive, then H is transitive. Why?
I If H is 2-transitive, then H is primitive. Why?

Group actions

Suppose G is a subgroup of Sn acting on
Ω = {1, 2, . . . , n}.

I The stabilizer of a ∈ Ω in G is H := {g ∈ G | ag = a}.
I The set {g ∈ G | ag = b} is equal to the coset Hx ,

where x is any element with ax = b.
I In other words ax 7→ Hx is a bijection between Ω and

the set of right cosets of H.
I Hence the orbit-stabilizer theorem: |H|.|Ω| = |G|.
I Conversely, the action of G on Ω is the same as the

action on cosets of H given by g : Hx 7→ Hxg.

Maximal subgroups

I This gives a very useful correspondence between
transitive group actions and subgroups.

I primitive group actions correspond to maximal
subgroups:

I The block of imprimitivity containing a, say B,
corresponds to the cosets Hx such that ax ∈ B.

I The union of these cosets is a subgroup K with
H < K < G, so H is not maximal.

I . . . and conversely.



SIMPLICITY OF
ALTERNATING GROUPS

Conjugacy classes

I Every element in Sn can be written as a product of
disjoint cycles.

I Conjugation by g ∈ Sn is the map x 7→ g−1xg. It
maps a cycle (a1, . . . , ak) to (a1

g, . . . , ak
g).

I Hence two elements of Sn are conjugate if and only if
they have the same cycle type.

I Conjugacy in An is a little more subtle: if there is a
cycle of even length, or two cycles of the same odd
length, then we get the same answer.

I But if the cycles have distinct odd lengths then the
conjugacy class in Sn splits into two classes of equal
size in An.

Simplicity of A5

I The conjugacy classes in A5 are:
I One identity element;
I 15 elements of shape (a, b)(c, d);
I 20 elements of shape (a, b, c);
I 24 elements of shape (a, b, c, d , e), consisting of two

conjugacy class of 12 elements each.

I No proper non-trivial union of conjugacy classes,
containing the identity element, has size dividing 60,
so there is no proper non-trivial normal subgroup.

Simplicity of An

I Assume N is a normal subgroup of An.
I Then N ∩ An−1 is normal in An−1, so by induction is

either 1 or An−1.
I In the first case, N has at most n elements, but there

is no conjugacy class small enough to be in N.
I In the second case, N contains a 3-cycle, so contains

all 3-cycles, so is An.



COFFEE BREAK
SUBGROUPS OF
SYMMETRIC AND

ALTERNATING GROUPS

Intransitive subgroups

We work in Sn rather than An (as it is easier), and
consider only maximal subgroups.

I If a subgroup has more than two orbits, it cannot be
maximal

I If a subgroup has two orbits, of lengths k and n − k ,
then it is contained in Sk × Sn−k .

I This is maximal if k 6= n − k . Why?
I If k = n − k we can adjoin an element swapping the

two orbits, giving a larger group (Sk × Sk).2 which is
maximal.

I The intransitive maximal subgroups of Sn are, up to
conjugacy, Sk × Sn−k for 1 ≤ k < n/2.

Transitive imprimitive subgroups

I If n = km, then you can split Ω into k subsets of size
m.

I The stabilizer of this partition contains
Sm × Sm × · · · × Sm, the direct product of k copies of
Sm.

I It also contains Sk permuting the k blocks.
I Together these form the wreath product of Sm with

Sk , written Sm o Sk .
I These subgroups are usually (always?) maximal in

Sn.



Primitive wreath products

I If n = mk , we can label the n points of Ω by k -tuples
(a1, . . . , ak) of elements ai from a set A of size m.

I Then Sm ×Sm × · · ·×Sm can act on this set by getting
each copy of Sm to act on one of the k coordinates.

I Also Sk can act by permuting the k coordinates.
I This gives an action of Sm oSk on the set of mk points.
I This is called the product action to distinguish it from

the imprimitive action we have just seen.

Affine groups

I If n = pd , where p is prime, then we can label the n
points of Ω by the vectors of a d-dimensional vector
space over Z/pZ.

I The translations x 7→ x + v act on this vector space.
I The linear transformations x 7→ xM (where M is an

invertible matrix) also act.
I These generate a group AGLd(p) which we shall

study in more detail next week.
I Usually (but not always) these groups are maximal in

either Sn or An.

Subgroups of diagonal type

These are harder to describe.
I Let T be a non-abelian simple group, and let H be

the wreath product T o Sm for some m ≥ 2.
I This contains a ‘diagonal’ subgroup D ∼= T consisting

of all the ‘diagonal’ elements
(t , t , . . . , t) ∈ T × T × · · · × T .

I H contains a subgroup D × Sm of index |T |m−1.
I Let H act on the n = |T |m−1 cosets of this subgroup.
I Then H is nearly maximal in Sn: we just need to

adjoin the automorphisms of T , acting the same way
on all the m copies of T .

Almost simple groups

I A group G is almost simple if there is a simple group
T such that T ≤ G ≤ AutT .

I If M is a maximal subgroup of G, then G acts
primitively on the |G|/|M| cosets of M.

I Hence G is a subgroup of Sn, where n = |G|/|M|.
I Often such a group G is maximal in Sn or An.
I For a reasonable value of n these are straightforward

to classify.
I But classifying these groups G for all n is a hopeless

task.



The O’Nan–Scott Theorem

says that every maximal subgroup of An or Sn is of one of
these types.
If H is any proper subgroup of Sn other than An, then H is
a subgroup of (at least) one of the following:

I (intransitive) Sk × Sn−k , for k < n/2;
I (transitive imprimitive) Sk o Sm, for n = km, 1 < k < n;
I (product action) Sk o Sm, for n = km, k ≥ 5;
I (affine) AGLd(p), for n = pd , p prime;
I (diagonal) T m.(Out(T )× Sm), where T is non-abelian

simple, and n = |T |m−1;
I (almost simple) an almost simple group G acting on

the n cosets of a maximal subgroup M.

THE END


