Lecture 1: Introduction, and alternating groups

Robert A. Wilson

Queen Mary, University of London
LTCC, 6th October 2008

Simple groups

- A subgroup H of a group G is normal if the left and right cosets are equal, $H g=g H$ for all $g \in G$.
- A group G is simple if it has exactly two normal subgroups, 1 and G.
- The abelian simple groups are exactly the cyclic groups of prime order, C_{p}.
- The non-abelian simple groups are much harder to classify: 50 years of hard work by many people, c. 1955-2005, led to
- CFSG: the Classification Theorem for Finite Simple Groups.

INTRODUCTION

CFSG

Every non-abelian finite simple group is one of the following

- an alternating group $A_{n}, n \geq 5$: the set of even permutations on n points;
- a classical group over a finite field: six families (linear, unitary, symplectic, and three families of orthogonal groups);
- an exceptional group of Lie type: ten families;
- 26 sporadic simple groups, ranging in size from M_{11} of order 7920 to the Monster of order nearly 10^{54}.
Our aim is to understand the statement of this theorem in more detail.

Practicalities

- The course web-site is accessible from the LTCC site http://www.ltcc.ac.uk/, or directly at http://www.maths.qmul.ac.uk/raw/FSG/. It will contain lecture notes, exercises, solutions, links to bacground reading, further reading, etc.
- You are encouraged to print off and read the lecture notes, which are more detailed than the lectures themselves.

ALTERNATING GROUPS

Even permutations

- A permutation is even if it can be written as a product of an even number of transpositions, and odd otherwise.
- The even permutations form a subgroup called the alternating group, and the odd permutations form a coset of this subgroup.
- In particular, the alternating group has index 2 in the symmetric group.
- So if Ω has n points, the symmetric group S_{n} has order $n!$, and the alternating group has order $n!/ 2$.

Transitivity

Primitivity

- Write a^{π} for the image of $a \in \Omega$ under the permutation π.
- The orbit of $a \in \Omega$ under the group H is $\left\{a^{\pi} \mid \pi \in H\right\}$.
- The orbits under H form a partition of Ω.
- If there is only one orbit (Ω itself), then H is transitive.
- For $k \geq 1$, a group H is k-transitive if for every set of k distinct elements $a_{1}, \ldots, a_{k} \in \Omega$ and every set of k disctinct elements $b_{1}, \ldots, b_{k} \in \Omega$, there is a permutation $\pi \in H$ with $a_{i}^{\pi}=b_{i}$ for all i.

Group actions

Suppose G is a subgroup of S_{n} acting on $\Omega=\{1,2, \ldots, n\}$.

- The stabilizer of $a \in \Omega$ in G is $H:=\left\{g \in G \mid a^{g}=a\right\}$.
- The set $\left\{g \in G \mid a^{g}=b\right\}$ is equal to the coset $H x$, where x is any element with $a^{x}=b$.
- In other words $a^{x} \mapsto H x$ is a bijection between Ω and the set of right cosets of H.
- Hence the orbit-stabilizer theorem: $|H| .|\Omega|=|G|$.
- Conversely, the action of G on Ω is the same as the action on cosets of H given by $g: H x \mapsto H x g$.
- A block system for H is a partition of Ω preserved by H.
- The partitions $\{\Omega\}$ and $\{\{a\} \mid a \in \Omega\}$ are trivial block systems.
- If H preserves a non-trivial block system (called a system of imprimitivity), then H is called imprimitive.
- Otherwise H is primitive.
- If H is primitive, then H is transitive. Why?
- If H is 2-transitive, then H is primitive. Why?
- This gives a very useful correspondence between transitive group actions and subgroups.
- primitive group actions correspond to maximal subgroups:
- The block of imprimitivity containing a, say B, corresponds to the cosets $H x$ such that $a^{x} \in B$.
- The union of these cosets is a subgroup K with $H<K<G$, so H is not maximal.
- ... and conversely.

Conjugacy classes

SIMPLICITY OF
 ALTERNATING GROUPS

- Every element in S_{n} can be written as a product of disjoint cycles.
- Conjugation by $g \in S_{n}$ is the map $x \mapsto g^{-1} x g$. It maps a cycle $\left(a_{1}, \ldots, a_{k}\right)$ to ($a_{1}{ }^{g}, \ldots, a_{k}{ }^{g}$).
- Hence two elements of S_{n} are conjugate if and only if they have the same cycle type.
- Conjugacy in A_{n} is a little more subtle: if there is a cycle of even length, or two cycles of the same odd length, then we get the same answer.
- But if the cycles have distinct odd lengths then the conjugacy class in S_{n} splits into two classes of equal size in A_{n}.

Simplicity of A_{5}

- The conjugacy classes in A_{5} are:
- One identity element;
- 15 elements of shape $(a, b)(c, d)$;
- 20 elements of shape (a, b, c);
- 24 elements of shape (a, b, c, d, e), consisting of two conjugacy class of 12 elements each.
- No proper non-trivial union of conjugacy classes, containing the identity element, has size dividing 60, so there is no proper non-trivial normal subgroup.

Simplicity of A_{n}

- Assume N is a normal subgroup of A_{n}.
- Then $N \cap A_{n-1}$ is normal in A_{n-1}, so by induction is either 1 or A_{n-1}.
- In the first case, N has at most n elements, but there is no conjugacy class small enough to be in N.
- In the second case, N contains a 3 -cycle, so contains all 3-cycles, so is A_{n}.

COFFEE BREAK

Intransitive subgroups

We work in S_{n} rather than A_{n} (as it is easier), and consider only maximal subgroups.

- If a subgroup has more than two orbits, it cannot be maximal
- If a subgroup has two orbits, of lengths k and $n-k$, then it is contained in $S_{k} \times S_{n-k}$.
- This is maximal if $k \neq n-k$. Why?
- If $k=n-k$ we can adjoin an element swapping the two orbits, giving a larger group $\left(S_{k} \times S_{k}\right) .2$ which is maximal.
- The intransitive maximal subgroups of S_{n} are, up to conjugacy, $S_{k} \times S_{n-k}$ for $1 \leq k<n / 2$.

SUBGROUPS OF SYMMETRIC AND ALTERNATING GROUPS

Transitive imprimitive subgroups

- If $n=k m$, then you can split Ω into k subsets of size m.
- The stabilizer of this partition contains $S_{m} \times S_{m} \times \cdots \times S_{m}$, the direct product of k copies of S_{m}.
- It also contains S_{k} permuting the k blocks.
- Together these form the wreath product of S_{m} with S_{k}, written $S_{m}<S_{k}$.
- These subgroups are usually (always?) maximal in S_{n}.

Primitive wreath products

- If $n=m^{k}$, we can label the n points of Ω by k-tuples $\left(a_{1}, \ldots, a_{k}\right)$ of elements a_{i} from a set A of size m.
- Then $S_{m} \times S_{m} \times \cdots \times S_{m}$ can act on this set by getting each copy of S_{m} to act on one of the k coordinates.
- Also S_{k} can act by permuting the k coordinates.
- This gives an action of $S_{m} 2 S_{k}$ on the set of m^{k} points.
- This is called the product action to distinguish it from the imprimitive action we have just seen.

Subgroups of diagonal type

These are harder to describe.

- Let T be a non-abelian simple group, and let H be the wreath product T i S_{m} for some $m \geq 2$.
- This contains a 'diagonal' subgroup $D \cong T$ consisting of all the 'diagonal' elements $(t, t, \ldots, t) \in T \times T \times \cdots \times T$.
- H contains a subgroup $D \times S_{m}$ of index $|T|^{m-1}$.
- Let H act on the $n=|T|^{m-1}$ cosets of this subgroup.
- Then H is nearly maximal in S_{n} : we just need to adjoin the automorphisms of T, acting the same way on all the m copies of T.

Affine groups

- If $n=p^{d}$, where p is prime, then we can label the n points of Ω by the vectors of a d-dimensional vector space over $\mathbb{Z} / p \mathbb{Z}$.
- The translations $x \mapsto x+v$ act on this vector space.
- The linear transformations $x \mapsto x M$ (where M is an invertible matrix) also act.
- These generate a group $A G L_{d}(p)$ which we shall study in more detail next week.
- Usually (but not always) these groups are maximal in either S_{n} or A_{n}.
- A group G is almost simple if there is a simple group T such that $T \leq G \leq \operatorname{Aut} T$.
- If M is a maximal subgroup of G, then G acts primitively on the $|G| /|M|$ cosets of M.
- Hence G is a subgroup of S_{n}, where $n=|G| /|M|$.
- Often such a group G is maximal in S_{n} or A_{n}.
- For a reasonable value of n these are straightforward to classify.
- But classifying these groups G for all n is a hopeless task.

The O'Nan-Scott Theorem

says that every maximal subgroup of A_{n} or S_{n} is of one of these types.
If H is any proper subgroup of S_{n} other than A_{n}, then H is a subgroup of (at least) one of the following:

- (intransitive) $S_{k} \times S_{n-k}$, for $k<n / 2$;
- (transitive imprimitive) $S_{k} \prec S_{m}$, for $n=k m, 1<k<n$;
- (product action) $S_{k} \imath S_{m}$, for $n=k^{m}, k \geq 5$;
- (affine) $A G L_{d}(p)$, for $n=p^{d}, p$ prime;
- (diagonal) $T^{m} .\left(\operatorname{Out}(T) \times S_{m}\right)$, where T is non-abelian simple, and $n=|T|^{m-1}$;
- (almost simple) an almost simple group G acting on the n cosets of a maximal subgroup M.

