Lecture 1: Introduction, and alternating groups

Robert A. Wilson

Queen Mary, University of London

LTCC, 6th October 2008

Simple groups

- ► A subgroup *H* of a group *G* is normal if the left and right cosets are equal, Hg = gH for all $g \in G$.
- A group G is simple if it has exactly two normal subgroups, 1 and G.
- The abelian simple groups are exactly the cyclic groups of prime order, C_p.
- The non-abelian simple groups are much harder to classify: 50 years of hard work by many people, c. 1955–2005, led to
- CFSG: the Classification Theorem for Finite Simple Groups.

INTRODUCTION

CFSG

Every non-abelian finite simple group is one of the following

- ► an alternating group A_n, n ≥ 5: the set of even permutations on n points;
- a classical group over a finite field: six families (linear, unitary, symplectic, and three families of orthogonal groups);
- an exceptional group of Lie type: ten families;
- 26 sporadic simple groups, ranging in size from M₁₁ of order 7920 to the Monster of order nearly 10⁵⁴.

Our aim is to understand the statement of this theorem in more detail.

Practicalities

- The course web-site is accessible from the LTCC site http://www.ltcc.ac.uk/, or directly at http://www.maths.qmul.ac.uk/~raw/FSG/. It will contain lecture notes, exercises, solutions, links to bacground reading, further reading, etc.
- You are encouraged to print off and read the lecture notes, which are more detailed than the lectures themselves.

ALTERNATING GROUPS

Permutations

- A permutation on a set Ω is a bijection from Ω to itself.
- The set of permutations on Ω forms a group, called the symmetric group on Ω.
- A transposition is a permutation which swaps two points and fixes all the rest.
- Every permutation can be written as a product of transpositions.
- The identity element cannot be written as the product of an odd number of transpositions.
- Hence no element can be written both as an even product and an odd product.

Even permutations

- A permutation is even if it can be written as a product of an even number of transpositions, and odd otherwise.
- The even permutations form a subgroup called the alternating group, and the odd permutations form a coset of this subgroup.
- In particular, the alternating group has index 2 in the symmetric group.
- So if Ω has *n* points, the symmetric group S_n has order *n*!, and the alternating group has order *n*!/2.

Transitivity

Primitivity

- Write a^{π} for the image of $a \in \Omega$ under the permutation π .
- The orbit of $a \in \Omega$ under the group H is $\{a^{\pi} \mid \pi \in H\}$.
- The orbits under *H* form a partition of Ω .
- If there is only one orbit (Ω itself), then *H* is transitive.
- For k ≥ 1, a group H is k-transitive if for every set of k distinct elements a₁,..., a_k ∈ Ω and every set of k disctinct elements b₁,..., b_k ∈ Ω, there is a permutation π ∈ H with a_i^π = b_i for all i.

- A block system for H is a partition of Ω preserved by H.
- The partitions {Ω} and {{a} | a ∈ Ω} are trivial block systems.
- If H preserves a non-trivial block system (called a system of imprimitivity), then H is called imprimitive.
- Otherwise *H* is primitive.
- ▶ If *H* is primitive, then *H* is transitive. Why?
- ▶ If *H* is 2-transitive, then *H* is primitive. Why?

Group actions

Suppose *G* is a subgroup of S_n acting on $\Omega = \{1, 2, ..., n\}$.

- The stabilizer of $a \in \Omega$ in *G* is $H := \{g \in G \mid a^g = a\}$.
- ► The set $\{g \in G \mid a^g = b\}$ is equal to the coset Hx, where *x* is any element with $a^x = b$.
- In other words a^x → Hx is a bijection between Ω and the set of right cosets of H.
- Hence the orbit-stabilizer theorem: $|H| \cdot |\Omega| = |G|$.
- Conversely, the action of G on Ω is the same as the action on cosets of H given by g : Hx → Hxg.

Maximal subgroups

- This gives a very useful correspondence between transitive group actions and subgroups.
- primitive group actions correspond to maximal subgroups:
- ► The block of imprimitivity containing *a*, say *B*, corresponds to the cosets *Hx* such that *a^x* ∈ *B*.
- ► The union of these cosets is a subgroup K with H < K < G, so H is not maximal.</p>
- ... and conversely.

SIMPLICITY OF ALTERNATING GROUPS

Conjugacy classes

- Every element in S_n can be written as a product of disjoint cycles.
- Conjugation by g ∈ S_n is the map x → g⁻¹xg. It maps a cycle (a₁,..., a_k) to (a₁^g,..., a_k^g).
- Hence two elements of S_n are conjugate if and only if they have the same cycle type.
- Conjugacy in A_n is a little more subtle: if there is a cycle of even length, or two cycles of the same odd length, then we get the same answer.
- But if the cycles have distinct odd lengths then the conjugacy class in S_n splits into two classes of equal size in A_n.

Simplicity of *A*₅

- The conjugacy classes in A_5 are:
 - One identity element;
 - 15 elements of shape (a, b)(c, d);
 - 20 elements of shape (a, b, c);
 - 24 elements of shape (a, b, c, d, e), consisting of two conjugacy class of 12 elements each.
- No proper non-trivial union of conjugacy classes, containing the identity element, has size dividing 60, so there is no proper non-trivial normal subgroup.

Simplicity of A_n

- Assume N is a normal subgroup of A_n .
- ▶ Then $N \cap A_{n-1}$ is normal in A_{n-1} , so by induction is either 1 or A_{n-1} .
- In the first case, N has at most n elements, but there is no conjugacy class small enough to be in N.
- In the second case, N contains a 3-cycle, so contains all 3-cycles, so is A_n.

COFFEE BREAK

SUBGROUPS OF SYMMETRIC AND ALTERNATING GROUPS

Intransitive subgroups

We work in S_n rather than A_n (as it is easier), and consider only maximal subgroups.

- If a subgroup has more than two orbits, it cannot be maximal
- If a subgroup has two orbits, of lengths k and n − k, then it is contained in S_k × S_{n-k}.
- This is maximal if $k \neq n k$. Why?
- If k = n − k we can adjoin an element swapping the two orbits, giving a larger group (S_k × S_k).2 which is maximal.
- ► The intransitive maximal subgroups of S_n are, up to conjugacy, S_k × S_{n-k} for 1 ≤ k < n/2.</p>

Transitive imprimitive subgroups

- If n = km, then you can split Ω into k subsets of size m.
- The stabilizer of this partition contains
 S_m × S_m × ··· × S_m, the direct product of k copies of S_m.
- It also contains S_k permuting the k blocks.
- ► Together these form the wreath product of S_m with S_k , written $S_m \wr S_k$.
- These subgroups are usually (always?) maximal in S_n.

Primitive wreath products

Affine groups

- If $n = m^k$, we can label the *n* points of Ω by *k*-tuples (a_1, \ldots, a_k) of elements a_i from a set *A* of size *m*.
- ► Then $S_m \times S_m \times \cdots \times S_m$ can act on this set by getting each copy of S_m to act on one of the *k* coordinates.
- Also S_k can act by permuting the k coordinates.
- ▶ This gives an action of $S_m \wr S_k$ on the set of m^k points.
- This is called the product action to distinguish it from the imprimitive action we have just seen.

- If n = p^d, where p is prime, then we can label the n points of Ω by the vectors of a d-dimensional vector space over ℤ/pℤ.
- The translations $x \mapsto x + v$ act on this vector space.
- ► The linear transformations $x \mapsto xM$ (where *M* is an invertible matrix) also act.
- These generate a group AGL_d(p) which we shall study in more detail next week.
- ► Usually (but not always) these groups are maximal in either S_n or A_n.

Subgroups of diagonal type

These are harder to describe.

- ▶ Let *T* be a non-abelian simple group, and let *H* be the wreath product $T \wr S_m$ for some $m \ge 2$.
- ► This contains a 'diagonal' subgroup D ≅ T consisting of all the 'diagonal' elements (t, t,..., t) ∈ T × T × ··· × T.
- *H* contains a subgroup $D \times S_m$ of index $|T|^{m-1}$.
- Let *H* act on the $n = |T|^{m-1}$ cosets of this subgroup.
- Then *H* is nearly maximal in S_n : we just need to adjoin the automorphisms of *T*, acting the same way on all the *m* copies of *T*.

Almost simple groups

- A group G is almost simple if there is a simple group T such that $T \le G \le \operatorname{Aut} T$.
- ► If *M* is a maximal subgroup of *G*, then *G* acts primitively on the |*G*|/|*M*| cosets of *M*.
- Hence *G* is a subgroup of S_n , where n = |G|/|M|.
- Often such a group G is maximal in S_n or A_n .
- For a reasonable value of *n* these are straightforward to classify.
- But classifying these groups G for all n is a hopeless task.

The O'Nan–Scott Theorem

says that every maximal subgroup of A_n or S_n is of one of these types.

If *H* is any proper subgroup of S_n other than A_n , then *H* is a subgroup of (at least) one of the following:

- (intransitive) $S_k \times S_{n-k}$, for k < n/2;
- ▶ (transitive imprimitive) $S_k \wr S_m$, for n = km, 1 < k < n;
- (product action) $S_k \wr S_m$, for $n = k^m$, $k \ge 5$;
- (affine) $AGL_d(p)$, for $n = p^d$, p prime;
- (diagonal) T^{m} .(Out(T) × S_{m}), where T is non-abelian simple, and $n = |T|^{m-1}$;
- (almost simple) an almost simple group G acting on the n cosets of a maximal subgroup M.

THE END