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INTRODUCTION

Classical groups

The six families of classical finite simple groups are all
essentially matrix groups over finite fields:

I the projective special linear groups PSLn(q);
I the projective special unitary group PSUn(q);
I the projective symplectic groups PSp2n(q);
I three families of orthogonal groups

I PΩ2n+1(q);
I PΩ+

2n(q);
I PΩ−

2n(q).

Finite fields

A field is a set F with all the usual arithmetical operations
and rules.

I {F , +,−, 0} is an abelian group;
I {F ∗, ., /, 1} is an abelian group, where F ∗ = F \ {0};
I x(y + z) = xy + xz

Example: the integers modulo p, where p is a prime.



More finite fields

I In any finite field F , the subfield F0 generated by 1
has prime order, p.

I F is a vector space, of dimension d , over F0, so has
pd elements.

I In fact, there is exactly one field of each such order
pd .

I To make such a field, pick an irreducible polynomial f
of degree d , and construct the quotient F0[x ]/(f ) of
the polynomial ring.

I Example: p = 2, f (x) = x2 + x + 1, gives a field of
order 4 as F4 = {0, 1, ω, ω} with ω2 = ω and
ω + ω = 1.

LINEAR GROUPS

The general linear group

I GLn(q) is the group of all invertible n × n matrices
with entries in the field F = Fq of order q.

I The scalar matrices form a normal subgroup Z of
order q − 1.

I the projective general linear group
PGLn(q) = GLn(q)/Z .

I The determinant map det : GLn(q) → F ∗ is a group
homomorphism.

I Its kernel is the special linear group SLn(q).
I The projective special linear group

PSLn(q) = SLn(q)/(Z ∩ SLn(q)).

The orders of the linear groups

I How many invertible matrices are there?
I Choose each row to be linearly independent of the

previous rows.
I The first i rows span an i-dimensional space, which

has q i vectors.
I Therefore there are qn − q i choices for the (i + 1)th

row.
I Hence |GLn(q)| = (qn − 1)(qn − q) · · · (qn − qn−1).
I |SLn(q)| = |PGLn(q)| = |GLn(q)|/(q − 1).
I |PSLn(q)| = |SLn(q)|/gcd(n, q − 1).



An example: GL2(2)

I F = F2 = Z/2Z = {0, 1} with 1 + 1 = 0.
I The 2-dimensional vector space F 2 has four vectors,

(0, 0), (0, 1), (1, 0), (1, 1).
I The first row can be any of the 3 non-zero vectors.
I The second row can be any of the remaining 2

non-zero vectors.
I Hence |GL2(2)| = 6.
I GL2(2) acts on the vector space by permuting the

three non-zero vectors in all possible ways.
I Hence GL2(2) ∼= S3.

More examples

I PGL2(3) ∼= S4, permuting the four 1-dimensional
subspaces;

I PSL2(3) ∼= A4;
I PSL2(4) ∼= A5, permuting the five 1-dimensional

subspaces;
I PSL2(5) ∼= A5, and PGL2(5) ∼= S5.
I In fact, PSLn(q) is a simple group except for the

cases PSL2(2) ∼= S3 and PSL2(3) ∼= A4.

Iwasawa’s Lemma

The easiest way to prove simplicity of PSLn(q) is to use:

Theorem (Iwasawa’s lemma)
If G is a finite perfect group acting faithfully and primitively
on a set Ω, and the point stabilizer H has a normal
abelian subgroup A whose conjugates generate G, then
G is simple.

Proof of Iwasawa’s Lemma

I Otherwise, choose a normal subgroup K with
1 < K < G.

I Choose a point stabilizer H with K 6≤ H.
I Hence G = HK since H is maximal.
I Any g ∈ G can be written g = hk .
I Any conjugate of A is

g−1Ag = k−1h−1Ahk = k−1Ak ≤ AK .
I Therefore G = AK .
I Now G/K = AK/K ∼= A/(A ∩ K ) is abelian.
I But G is perfect, so has no nontrivial abelian

quotients.
I Contradiction.



Simplicity of PSLn(q)

I Let PSLn(q) act on the 1-dimensional subspaces of
F n.

I This action is 2-transitive, so primitive.
I The stabilizer of the point 〈(1, 0, 0, . . . , 0)〉 consists

(modulo scalars) of matrices
(

λ 0
v M

)
.

I It has a normal abelian subgroup consisting of

matrices
(

1 0
v In−1

)
.

I These matrices encode elementary row operations,
and you learnt in linear algebra that every matrix of
determinant 1 is a product of such matrices.

Simplicity of PSLn(q), cont.

I To prove that PSLn(q) is perfect it suffices to prove
that these matrices (transvections) are commutators.

I If n ≥ 3 observe that1 0 0
1 1 0
0 0 1

 ,

1 0 0
0 1 0
0 x 1

 =

 1 0 0
0 1 0
−x 0 1


I If q ≥ 4 then Fq has an element x with x3 6= x , so[(

1 0
y 1

)
,

(
x 0
0 x−1

)]
=

(
1 0

y(x2 − 1) 1

)
I Hence by Iwasawa’s Lemma, PSLn(q) is simple

whenever n ≥ 3 or q ≥ 4.

COFFEE BREAK SUBGROUPS OF
GENERAL LINEAR

GROUPS



Subspace stabilizers

I The stabilizer of a subspace of dimension k looks like
this:

k →

n − k →

GLk(q) 0

qk(n−k) GLn−k(q)


I The subgroup of matrices of shape

(
Ik 0
A In−k

)
is a

normal abelian subgroup.
I The quotient by this subgroup is isomorphic to

GLk(q)× GLn−k(q).

Imprimitive subgroups

Suppose V = V1 ⊕ · · · ⊕ Vk is a direct sum of k
subspaces each of dimension m.

I The stabilizer of this decomposition of the vector
space has a normal subgroup GLm(q)× · · · ×GLm(q)
acting on V1, . . . , Vk separately.

I There is also a subgroup Sk permuting these k
subspaces.

I Together these generate a wreath product
GLm(q) o Sk .

Tensor products

If A = (aij) ∈ GLk(q) and B = (bij) ∈ GLm(q) then the
following matrix is in GLkm(q):

A ⊗ B =


a11B a12B · · · a1kB
a21B a22B · · · a2kB

...
ak1B ak2B · · · akkB


If we multiply A by a scalar λ, and B by the inverse λ−1,
then this matrix does not change.
Factoring out by the scalars we have

PGLk(q)× PGLm(q) < PGLkm(q)

Wreathed tensor products

Repeating this construction with m copies of GLk(q) we
get

PGLk(q)× · · · × PGLk(q) < PGLkm(q)

We can also permute the m copies of PGLk(q) with a
copy of Sm.
Together these give a wreath product

PGLk(q) o Sm < PGLkm(q)



Extraspecial groups

Suppose r is an odd prime, and α is an element of order r
in the field F (so r is a divisor of |F | − 1).

I Let R be the group generated by the r × r matrices
α 0 0 · · · 0
0 α2 0 · · · 0
...
0 0 · · · 0
0 0 · · · αr−1

 and


0 1 0 · · · 0
0 0 1 0
...
0 0 0 · · · 1
1 0 0 · · · 0


I Then R is non-abelian of order r 3

I Taking the tensor product of k copies of R gives an
extraspecial group of order r 1+2k acting on a space of
dimension r k .

Extraspecial groups, cont.

A slightly different construction is required for the prime 2
I Both D8 and Q8 have 2-dimensional representations
I Tensoring them together gives extraspecial groups of

order 21+2k , with representations of degree 2k

I In fact D8 ⊗ D8 = Q8 ⊗ Q8, so there are just two
extraspecial groups of each order.

I If the field contains elements of order 4, you can
adjoin these scalars to make a bigger group which
contains both extraspecial groups.

Almost quasi-simple groups

I A group G is quasi-simple if G = G′ and G/Z (G) is
simple

I Example: SLn(q) is quasi-simple except for SL2(2)
and SL2(3)

I A group G is almost quasi-simple (for us - this is not
entirely standard terminology) if G/Z is almost
simple, where Z is a suitable group of scalar
matrices.

The Aschbacher–Dynkin theorem

Every subgroup of GLn(q) which does not contain SLn(q)
is contained in the stabilizer of one of the following

I a subspace of dimension k
I a direct sum of k subspaces of dimension m, where

n = km
I a tensor product F k ⊗ F m, where n = km
I a tensor product of m copies of F k , where n = km

I an extraspecial group r 1+2k , where n = r k

I an almost quasi-simple subgroup



THE END


