Lecture 1: Introduction, and alternating groups

Robert A. Wilson

Queen Mary, University of London

LTCC, 6th October 2008

INTRODUCTION

Simple groups

- A subgroup H of a group G is normal if the left and right cosets are equal, $Hg = gH$ for all $g \in G$.

- A group G is simple if it has exactly two normal subgroups, 1 and G.

- The abelian simple groups are exactly the cyclic groups of prime order, C_p.

- The non-abelian simple groups are much harder to classify: 50 years of hard work by many people, c. 1955–2005, led to

- CFSG: the Classification Theorem for Finite Simple Groups.

CFSG

Every non-abelian finite simple group is one of the following

- an alternating group A_n, $n \geq 5$: the set of even permutations on n points;

- a classical group over a finite field: six families (linear, unitary, symplectic, and three families of orthogonal groups);

- an exceptional group of Lie type: ten families;

- 26 sporadic simple groups, ranging in size from M_{11} of order 7920 to the Monster of order nearly 10^{54}.

Our aim is to understand the statement of this theorem in more detail.
Practicalities

▶ The course web-site is accessible from the LTCC site http://www.ltcc.ac.uk/, or directly at http://www.maths.qmul.ac.uk/~raw/FSG/. It will contain lecture notes, exercises, solutions, links to background reading, further reading, etc.
▶ You are encouraged to print off and read the lecture notes, which are more detailed than the lectures themselves.

ALTERNATING GROUPS

Permutations

▶ A permutation on a set Ω is a bijection from Ω to itself.
▶ The set of permutations on Ω forms a group, called the symmetric group on Ω.
▶ A transposition is a permutation which swaps two points and fixes all the rest.
▶ Every permutation can be written as a product of transpositions.
▶ The identity element cannot be written as the product of an odd number of transpositions.
▶ Hence no element can be written both as an even product and an odd product.

Even permutations

▶ A permutation is even if it can be written as a product of an even number of transpositions, and odd otherwise.
▶ The even permutations form a subgroup called the alternating group, and the odd permutations form a coset of this subgroup.
▶ In particular, the alternating group has index 2 in the symmetric group.
▶ So if Ω has n points, the symmetric group S_n has order $n!$, and the alternating group has order $n!/2$.
Transitivity

- Write a^π for the image of $a \in \Omega$ under the permutation π.
- The orbit of $a \in \Omega$ under the group H is $\{a^\pi \mid \pi \in H\}$.
- The orbits under H form a partition of Ω.
- If there is only one orbit (the entire set Ω itself), then H is transitive.
- For $k \geq 1$, a group H is k-transitive if for every set of k distinct elements $a_1, \ldots, a_k \in \Omega$ and every set of k distinct elements $b_1, \ldots, b_k \in \Omega$, there is a permutation $\pi \in H$ with $a_i^\pi = b_i$ for all i.

Primitivity

- A block system for H is a partition of Ω preserved by H.
- The partitions $\{\Omega\}$ and $\{\{a\} \mid a \in \Omega\}$ are trivial block systems.
- If H preserves a non-trivial block system (called a system of imprimitivity), then H is called imprimitive.
- Otherwise H is primitive.
- If H is primitive, then H is transitive. Why?
- If H is 2-transitive, then H is primitive. Why?

Group actions

Suppose G is a subgroup of S_n, acting on $\Omega = \{1, 2, \ldots, n\}$.
- The stabilizer of $a \in \Omega$ in G is $H := \{g \in G \mid a^g = a\}$.
- The set $\{g \in G \mid a^g = b\}$ is equal to the coset Hx, where x is any element with $a^x = b$.
- In other words $a^x \mapsto Hx$ is a bijection between Ω and the set of right cosets of H.
- Hence the orbit-stabilizer theorem: $|H| \cdot |\Omega| = |G|$.
- Conversely, the action of G on Ω is the same as the action on cosets of H given by $g : Hx \mapsto Hxg$.

Maximal subgroups

- This gives a very useful correspondence between transitive group actions and subgroups.
- primitive group actions correspond to maximal subgroups:
 - The block of imprimitivity containing a, say B, corresponds to the cosets Hx such that $a^x \in B$.
 - The union of these cosets is a subgroup K with $H < K < G$, so H is not maximal.
- ... and conversely.
Simplicity of Alternating Groups

- Every element in S_n can be written as a product of disjoint cycles.
- Conjugation by $g \in S_n$ is the map $x \mapsto g^{-1}xg$. It maps a cycle (a_1, \ldots, a_k) to (a_1^g, \ldots, a_k^g).
- Hence two elements of S_n are conjugate if and only if they have the same cycle type.
- Conjugacy in A_n is a little more subtle: if there is a cycle of even length, or two cycles of the same odd length, then we get the same answer.
- But if the cycles have distinct odd lengths then the conjugacy class in S_n splits into two classes of equal size in A_n.

Simplicity of A_5

- The conjugacy classes in A_5 are:
 - One identity element;
 - 15 elements of shape $(a, b)(c, d)$;
 - 20 elements of shape (a, b, c);
 - 24 elements of shape (a, b, c, d, e), consisting of two conjugacy class of 12 elements each.
- No proper non-trivial union of conjugacy classes, containing the identity element, has size dividing 60, so there is no proper non-trivial normal subgroup.

Simplicity of A_n

- Assume N is a normal subgroup of A_n.
- Then $N \cap A_{n-1}$ is normal in A_{n-1}, so by induction is either 1 or A_{n-1}.
- In the first case, N has at most n elements, but there is no conjugacy class small enough to be in N.
- In the second case, N contains a 3-cycle, so contains all 3-cycles, so is A_n.
Intransitive subgroups

We work in S_n rather than A_n (as it is easier), and consider only maximal subgroups.

- If a subgroup has more than two orbits, it cannot be maximal.
- If a subgroup has two orbits, of lengths k and $n - k$, then it is contained in $S_k \times S_{n-k}$.
- This is maximal if $k \neq n - k$. Why?
- If $k = n - k$ we can adjoin an element swapping the two orbits, giving a larger group $(S_k \times S_k).2$ which is maximal.
- The intransitive maximal subgroups of S_n are, up to conjugacy, $S_k \times S_{n-k}$ for $1 \leq k < n/2$.

Transitive imprimitive subgroups

- If $n = km$, then you can split Ω into k subsets of size m.
- The stabilizer of this partition contains $S_m \times S_m \times \cdots \times S_m$, the direct product of k copies of S_m.
- It also contains S_k permuting the k blocks.
- Together these form the wreath product of S_m with S_k, written $S_m \wr S_k$.
- These subgroups are usually (always?) maximal in S_n.
Primitive wreath products

- If $n = m^k$, we can label the n points of Ω by k-tuples (a_1, \ldots, a_k) of elements a_i from a set A of size m.
- Then $S_m \times S_m \times \cdots \times S_m$ can act on this set by getting each copy of S_m to act on one of the k coordinates.
- Also S_k can act by permuting the k coordinates.
- This gives an action of $S_m \wr S_k$ on the set of m^k points.
- This is called the product action to distinguish it from the imprimitive action we have just seen.

Affine groups

- If $n = p^d$, where p is prime, then we can label the n points of Ω by the vectors of a d-dimensional vector space over $\mathbb{Z}/p\mathbb{Z}$.
- The translations $x \mapsto x + v$ act on this vector space.
- The linear transformations $x \mapsto xM$ (where M is an invertible matrix) also act.
- These generate a group $AGL_d(p)$ which we shall study in more detail next week.
- Usually (but not always) these groups are maximal in either S_n or A_n.

Subgroups of diagonal type

These are harder to describe.
- Let T be a non-abelian simple group, and let H be the wreath product $T \wr S_m$ for some $m \geq 2$.
- This contains a ‘diagonal’ subgroup $D \cong T$ consisting of all the ‘diagonal’ elements $(t, t, \ldots, t) \in T \times T \times \cdots \times T$.
- H contains a subgroup $D \times S_m$ of index $|T|^{m-1}$.
- Let H act on the $n = |T|^{m-1}$ cosets of this subgroup.
- Then H is nearly maximal in S_n: we just need to adjoin the automorphisms of T, acting the same way on all the m copies of T.

Almost simple groups

- A group G is almost simple if there is a simple group T such that $T \leq G \leq \text{Aut } T$.
- If M is a maximal subgroup of G, then G acts primitively on the $|G| / |M|$ cosets of M.
- Hence G is a subgroup of S_n, where $n = |G| / |M|$.
- Often such a group G is maximal in S_n or A_n.
- For a reasonable value of n these are straightforward to classify.
- But classifying these groups G for all n is a hopeless task.
The O’Nan–Scott Theorem

says that every maximal subgroup of A_n or S_n is of one of these types.
If H is any proper subgroup of S_n other than A_n, then H is a subgroup of (at least) one of the following:

- (intransitive) $S_k \times S_{n-k}$, for $k < n/2$;
- (transitive imprimitive) $S_k : S_m$, for $n = km$, $1 < k < n$;
- (product action) $S_k \rtimes S_m$, for $n = km$, $k \geq 5$;
- (affine) $AGL_d(p)$, for $n = p^d$, p prime;
- (diagonal) $T^m.(\text{Out}(T) \times S_m)$, where T is non-abelian simple, and $n = |T|^{m-1}$;
- (almost simple) an almost simple group G acting on the n cosets of a maximal subgroup M.

THE END