Experiments in rectangular areas:
restricted randomization or row-column designs?

R. A. Bailey

r.a.bailey@qmul.ac.uk

Lisboa, April 2012

Thanks to CAPES for support in Brasil
1. Statistician and scientist discuss the planned experiment ...

...

Do you
▶ Go back to step 3, rerandomize and hope that the next field plan will be OK? (but maybe you will reject a large proportion of plans)
▶ Learn pertinent new information about constraints on the design, and so go back to step 1?
▶ Go back to step 2, and agree on a scheme of restricted randomization?
1. Statistician and scientist discuss the planned experiment …
2. … and agree on a design.
1. Statistician and scientist discuss the planned experiment …
2. … and agree on a design.
3. Statistician randomizes the design to produce a field plan.
1. Statistician and scientist discuss the planned experiment …
2. … and agree on a design.
3. Statistician randomizes the design to produce a field plan.
4. Scientist says “Oh, I can’t possibly do it that way because …”
1. Statistician and scientist discuss the planned experiment …
2. … and agree on a design.
3. Statistician randomizes the design to produce a field plan.
4. Scientist says “Oh, I can’t possibly do it that way because …”
1. Statistician and scientist discuss the planned experiment …

2. … and agree on a design.

3. Statistician randomizes the design to produce a field plan.

4. Scientist says “Oh, I can’t possibly do it that way because …”

Do you

► Go back to step 3, rerandomize and hope that the next field plan will be OK? (but maybe you will reject a large proportion of plans)
1. Statistician and scientist discuss the planned experiment …
2. … and agree on a design.
3. Statistician randomizes the design to produce a field plan.
4. Scientist says “Oh, I can’t possibly do it that way because …”

Do you
 ▶ Go back to step 3, rerandomize and hope that the next field plan will be OK? (but maybe you will reject a large proportion of plans)
 ▶ Learn pertinent new information about constraints on the design, and so go back to step 1?
1. Statistician and scientist discuss the planned experiment ...
2. … and agree on a design.
3. Statistician randomizes the design to produce a field plan.
4. Scientist says “Oh, I can’t possibly do it that way because …”

Do you
- Go back to step 3, rerandomize and hope that the next field plan will be OK? (but maybe you will reject a large proportion of plans)
- Learn pertinent new information about constraints on the design, and so go back to step 1?
- Go back to step 2, and agree on a scheme of restricted randomization?
The problem

An agricultural experiment to compare n treatments. The experimental area has r rows and n columns.

Use a randomized complete-block design with rows as blocks. (In each row independently, choose one of the $n!$ orders with equal probability.)

What should we do if the randomization produces a plan with one treatment always at one side of the rectangle?
Federer (1955 book): guayule trees

<table>
<thead>
<tr>
<th>B</th>
<th>D</th>
<th>G</th>
<th>A</th>
<th>F</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>G</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>D</td>
<td>F</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>C</td>
<td>F</td>
<td>G</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>B</td>
<td>F</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>E</td>
</tr>
</tbody>
</table>
Federer (1955 book): guayule trees

\[
\begin{array}{cccccc}
B & D & G & A & F & C & E \\
A & G & C & D & F & B & E \\
G & E & D & F & B & C & A \\
B & A & C & F & G & E & D \\
G & B & F & C & D & A & E \\
\end{array}
\]
Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual
Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization
Keep re-randomizing until you get a plan you like.
Analyse as usual.
Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization
Keep re-randomizing until you get a plan you like.
Analyse as usual.

Solution: Use a Latinized design, but analyse as usual
Deliberately construct a design in which
no treatment occurs more than once in any column.
Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization
Keep re-randomizing until you get a plan you like.
Analyse as usual.

Solution: Use a Latinized design, but analyse as usual
Deliberately construct a design in which
no treatment occurs more than once in any column.

Solution (following Yates):
Super-valid restricted randomization, with usual analysis
Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization
Keep re-randomizing until you get a plan you like.
Analyse as usual.

Solution: Use a Latinized design, but analyse as usual
Deliberately construct a design in which
no treatment occurs more than once in any column.

Solution (following Yates):
Super-valid restricted randomization, with usual analysis

Solution: Efficient row-column design,
with analysis allowing for rows and columns
Proposed courses of action

Solution (Fisher): Continue to randomize and analyse as usual

Solution: Simple-minded restricted randomization
Keep re-randomizing until you get a plan you like.
Analyse as usual.

Solution: Use a Latinized design, but analyse as usual
Deliberately construct a design in which
no treatment occurs more than once in any column.

Solution (following Yates):
Super-valid restricted randomization, with usual analysis

Solution: Efficient row-column design,
with analysis allowing for rows and columns

Solution: Use a carefully chosen Latinized design;
REML/ANOVA estimates of variance components
Continue to randomize and analyse as usual

- Simple to construct.
Continue to randomize and analyse as usual

- Simple to construct.
- Simple to randomize.
Continue to randomize and analyse as usual

- Simple to construct.
- Simple to randomize.
- Simple to analyse.
Continue to randomize and analyse as usual

- Simple to construct.
- Simple to randomize.
- Simple to analyse.
- Some treatment comparisons in some experiments will have a specially low or specially high variance, but the estimated variance is unbiased when averaged over all comparisons and all possible randomized plans.
Assumed model

Y_α is the response on plot α.

$E(Y_\alpha) = \theta_i$ where i is the treatment on α.

$\text{Var}(Y_\alpha) = \sigma^2$ for all α

$\text{Cov}(Y_\alpha, Y_\beta) = \begin{cases}
\rho\sigma^2 & \text{if } \alpha \neq \beta \text{ in same row} \\
\tau\sigma^2 & \text{if } \alpha \neq \beta \text{ in same column} \\
0 & \text{if } \alpha \neq \beta \text{ otherwise}
\end{cases}$

with $0 \leq \rho \leq 1$ and $0 \leq \tau \leq 1$.
Concurrence

$\lambda_{ij} = $ number of pairs of plots in the same column getting treatments i and j.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>D</th>
<th>G</th>
<th>A</th>
<th>F</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>G</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>B</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>D</td>
<td>F</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>C</td>
<td>F</td>
<td>G</td>
<td>E</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>B</td>
<td>F</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>
Concurrence

\(\lambda_{ij} = \) number of pairs of plots in the same column getting treatments \(i \) and \(j \).

\[
\begin{array}{ccccccc}
B & D & G & A & F & C & E \\
A & G & C & D & F & B & E \\
G & E & D & F & B & C & A \\
B & A & C & F & G & E & D \\
G & B & F & C & D & A & E \\
\end{array}
\]

\(\lambda_{AD} = 0 + 1 + 0 + 1 + 0 + 0 + 1 = 3 \)
Concurrence

\(\lambda_{ij} = \) number of pairs of plots in the same column getting treatments \(i \) and \(j \).

\[\begin{array}{cccccc}
B & D & G & A & F & C & E \\
A & G & C & D & F & B & E \\
G & E & D & F & B & C & A \\
B & A & C & F & G & E & D \\
G & B & F & C & D & A & E \\
\end{array} \]

\[\lambda_{AD} = 0 + 1 + 0 + 1 + 0 + 0 + 0 + 1 = 3 \]
\[\lambda_{AB} = 2 + 1 + 0 + 0 + 0 + 1 + 0 + 0 = 4 \]
Concurrence

\[\lambda_{ij} = \text{number of pairs of plots in the same column getting treatments } i \text{ and } j. \]

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>D</th>
<th>G</th>
<th>A</th>
<th>F</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>G</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>B</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>D</td>
<td>F</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>C</td>
<td>F</td>
<td>G</td>
<td>E</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>B</td>
<td>F</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

\[\lambda_{AD} = 0 + 1 + 0 + 1 + 0 + 0 + 0 + 1 = 3 \]
\[\lambda_{AB} = 2 + 1 + 0 + 0 + 0 + 1 + 0 + 0 = 4 \]
\[\lambda_{AA} = 1 + 1 + 0 + 1 + 0 + 1 + 0 + 1 = 5 \]
Concurrence

\(\lambda_{ij} = \) number of pairs of plots in the same column getting treatments \(i \) and \(j \).

\[
\begin{array}{cccccc}
B & D & G & A & F & C \\
A & G & C & D & F & B \\
G & E & D & F & B & C \\
B & A & C & F & G & E \\
G & B & F & C & D & A \\
\end{array}
\]

\[
\lambda_{AD} = 0 + 1 + 0 + 1 + 0 + 0 + 1 = 3 \\
\lambda_{AB} = 2 + 1 + 0 + 0 + 0 + 1 + 0 = 4 \\
\lambda_{AA} = 1 + 1 + 0 + 1 + 0 + 1 + 1 = 5 \\
\lambda_{BB} = 4 + 1 + 0 + 0 + 1 + 1 + 0 = 7
\]
Pairwise variance

\[
\text{Var}(Y_\alpha) = \sigma^2 \quad \text{for all } \alpha
\]

\[
\text{Cov}(Y_\alpha, Y_\beta) = \begin{cases}
\rho \sigma^2 & \text{if } \alpha \neq \beta \text{ in same row} \\
\tau \sigma^2 & \text{if } \alpha \neq \beta \text{ in same column} \\
0 & \text{if } \alpha \neq \beta \text{ otherwise}
\end{cases}
\]

\[
V_{ij} = \text{variance of the estimator of } \theta_i - \theta_j
\]

\[
= \frac{\sigma^2}{r^2} \left[2r - 2r \rho + (\lambda_{ii} - r) \tau + (\lambda_{jj} - r) \tau - 2\lambda_{ij} \tau \right]
\]
Pairwise variance

\[
\text{Var}(Y_\alpha) = \sigma^2 \quad \text{for all } \alpha
\]

\[
\text{Cov}(Y_\alpha, Y_\beta) = \begin{cases}
\rho \sigma^2 & \text{if } \alpha \neq \beta \text{ in same row} \\
\tau \sigma^2 & \text{if } \alpha \neq \beta \text{ in same column} \\
0 & \text{if } \alpha \neq \beta \text{ otherwise}
\end{cases}
\]

\[
V_{ij} = \text{variance of the estimator of } \theta_i - \theta_j
\]

\[
= \frac{\sigma^2}{r^2} \left[2r - 2r \rho + (\lambda_{ii} - r) \tau + (\lambda_{jj} - r) \tau - 2\lambda_{ij}\tau \right]
\]

↑

same

plot
Pairwise variance

\[
\text{Var}(Y_\alpha) = \sigma^2 \quad \text{for all } \alpha
\]

\[
\text{Cov}(Y_\alpha, Y_\beta) = \begin{cases}
\rho \sigma^2 & \text{if } \alpha \neq \beta \text{ in same row} \\
\tau \sigma^2 & \text{if } \alpha \neq \beta \text{ in same column} \\
0 & \text{if } \alpha \neq \beta \text{ otherwise}
\end{cases}
\]

\[
V_{ij} = \text{variance of the estimator of } \theta_i - \theta_j
\]

\[
= \frac{\sigma^2}{r^2} \left[2r - 2r \rho + (\lambda_{ii} - r) \tau + (\lambda_{jj} - r) \tau - 2\lambda_{ij} \tau \right]
\]

↑

same

\n
↑

same

\n
plot

row
Pairwise variance

\[
\text{Var}(Y_\alpha) = \sigma^2 \quad \text{for all } \alpha
\]

\[
\text{Cov}(Y_\alpha, Y_\beta) = \begin{cases}
\rho \sigma^2 & \text{if } \alpha \neq \beta \text{ in same row} \\
\tau \sigma^2 & \text{if } \alpha \neq \beta \text{ in same column} \\
0 & \text{if } \alpha \neq \beta \text{ otherwise}
\end{cases}
\]

\[
V_{ij} = \text{variance of the estimator of } \theta_i - \theta_j
\]

\[
= \frac{\sigma^2}{r^2} \left[2r - 2r \rho + (\lambda_{ii} - r) \tau + (\lambda_{jj} - r) \tau - 2\lambda_{ij} \tau \right]
\]

↑

same plot

↓

same row

↑

same column
Pairwise variance

\[
\text{Var}(Y_\alpha) = \sigma^2 \quad \text{for all } \alpha
\]

\[
\text{Cov}(Y_\alpha, Y_\beta) = \begin{cases}
\rho \sigma^2 & \text{if } \alpha \neq \beta \text{ in same row} \\
\tau \sigma^2 & \text{if } \alpha \neq \beta \text{ in same column} \\
0 & \text{if } \alpha \neq \beta \text{ otherwise}
\end{cases}
\]

\[
V_{ij} = \text{variance of the estimator of } \theta_i - \theta_j
\]

\[
= \frac{\sigma^2}{r^2} \left[2r - 2r \rho + (\lambda_{ii} - r) \tau + (\lambda_{jj} - r) \tau - 2\lambda_{ij} \tau \right]
\]

\[
= \frac{\sigma^2}{r^2} \left[2r(1 - \rho) + (\lambda_{ii} + \lambda_{jj} - 2\lambda_{ij} - 2r) \tau \right]
\]
Pairwise variance in the example

\[
\begin{array}{cccccc}
 B & D & G & A & F & C \\
 A & G & C & D & F & B \\
 G & E & D & F & B & C \\
 B & A & C & F & G & E \\
 G & B & F & C & D & A \\
\end{array}
\]

From \(V_{BG} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{4}{5} \tau \right] \)
Pairwise variance in the example

<table>
<thead>
<tr>
<th>B</th>
<th>D</th>
<th>G</th>
<th>A</th>
<th>F</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>G</td>
<td>C</td>
<td>D</td>
<td>F</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>D</td>
<td>F</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>C</td>
<td>F</td>
<td>G</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>B</td>
<td>F</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>E</td>
</tr>
</tbody>
</table>

From $V_{BG} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{4}{5} \tau \right]$ to $V_{EF} = \frac{2\sigma^2}{5} \left[1 - \rho + \tau \right]$
Pairwise variance in the example

\[
\begin{array}{ccccccc}
B & D & G & A & F & C & E \\
A & G & C & D & F & B & E \\
G & E & D & F & B & C & A \\
B & A & C & F & G & E & D \\
G & B & F & C & D & A & E
\end{array}
\]

From \(V_{BG} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{4}{5} \tau \right] \) to \(V_{EF} = \frac{2\sigma^2}{5} \left[1 - \rho + \tau \right] \)

with average \(V = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{1}{15} \tau \right] \).
Continue to randomize and analyse as usual: summary

- Simple to construct.
- Simple to randomize.
- Simple to analyse.
- Some treatment comparisons in some experiments will have a specially low or specially high variance, but the estimated variance is unbiased when averaged over all comparisons and all possible randomized plans.
Simple restricted randomization

Keep re-randomizing until you get a plan you like.
Analyse as usual.
Simple restricted randomization

Keep re-randomizing until you get a plan you like. Analyse as usual.

- Inefficient to produce plans: many will have to be rejected.
Simple restricted randomization

Keep re-randomizing until you get a plan you like. Analyse as usual.

- Inefficient to produce plans: many will have to be rejected. For the 5×7 rectangle, the proportion of plans with no repeat in any column is only 0.000006.
Simple restricted randomization

Keep re-randomizing until you get a plan you like. Analyse as usual.

- Inefficient to produce plans: many will have to be rejected. For the 5×7 rectangle, the proportion of plans with no repeat in any column is only 0.000006.

- The actual variance of treatment comparisons is lower, but the estimate of that variance is higher.
Calculations

\[\lambda_{ij} = \text{number of pairs of plots in the same column getting treatments } i \text{ and } j \]

Note that \(\sum_{j=1}^{n} \lambda_{ij} = r^2 \) for each \(i \).

We know that \(V_{ij} = \frac{\sigma^2}{r^2} \left[2r(1 - \rho) + (\lambda_{ii} + \lambda_{jj} - 2\lambda_{ij} - 2r)\tau \right] \)
Calculations

\[\lambda_{ij} = \text{number of pairs of plots in the same column getting treatments } i \text{ and } j \]

Note that \[\sum_{j=1}^{n} \lambda_{ij} = r^2 \] for each \(i \).

We know that

\[V_{ij} = \frac{\sigma^2}{r^2} \left[2r(1 - \rho) + (\lambda_{ii} + \lambda_{jj} - 2\lambda_{ij} - 2r)\tau \right] \]

Put \[V = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} V_{ij} \] and put \[D = \sum_{i=1}^{n} \lambda_{ii}. \]
Calculations

\(\lambda_{ij} = \) number of pairs of plots in the same column getting treatments \(i \) and \(j \)

Note that \(\sum_{j=1}^{n} \lambda_{ij} = r^2 \) for each \(i \).

We know that \(V_{ij} = \frac{\sigma^2}{r^2} [2r(1 - \rho) + (\lambda_{ii} + \lambda_{jj} - 2\lambda_{ij} - 2r)\tau] \)

Put \(V = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq i} V_{ij} \) and put \(D = \sum_{i=1}^{n} \lambda_{ii} \).

Calculations give \(V = \frac{2\sigma^2}{r^2} \left[r(1 - \rho) + \left(\frac{D - r^2}{n-1} - r \right) \tau \right] \).
Spectral form of covariance matrix

\[\text{Cov}(\mathbf{Y}) = \sigma^2[I + \rho(\mathbf{R} - I) + \tau(\mathbf{C} - I)] \]

where \(I \) is the identity matrix,
\(\mathbf{R} \) is the matrix whose \((\alpha, \beta)\)-entry is equal to 1 if plots \(\alpha \) and \(\beta \) are in the same row and to 0 otherwise,
\(\mathbf{C} \) is the similarly defined matrix for columns.
Spectral form of covariance matrix

\[\text{Cov}(\mathbf{Y}) = \sigma^2 [\mathbf{I} + \rho (\mathbf{R} - \mathbf{I}) + \tau (\mathbf{C} - \mathbf{I})] \]

where \(\mathbf{I} \) is the identity matrix, \(\mathbf{R} \) is the matrix whose \((\alpha, \beta)\)-entry is equal to 1 if plots \(\alpha \) and \(\beta \) are in the same row and to 0 otherwise, \(\mathbf{C} \) is the similarly defined matrix for columns.

So \(\text{Cov}(\mathbf{Y}) = \xi_0 \mathbf{S}_0 + \xi_1 \mathbf{S}_1 + \xi_2 \mathbf{S}_2 + \xi_3 \mathbf{S}_3 \), where

\[
\begin{align*}
\xi_0 &= \sigma^2 (1 + (n - 1)\rho + (r - 1)\tau) \\
\xi_1 &= \sigma^2 (1 - \tau + (n - 1)\rho) \\
\xi_2 &= \sigma^2 (1 - \rho + (r - 1)\tau) \\
\xi_3 &= \sigma^2 (1 - \rho - \tau)
\end{align*}
\]

\(\mathbf{S}_1 \) = \(\frac{1}{n} \mathbf{R} - \frac{1}{rn} \mathbf{J} \) \(\mathbf{S}_2 \) = \(\frac{1}{r} \mathbf{C} - \frac{1}{rn} \mathbf{J} \) \(\mathbf{S}_0 \) = \(\frac{1}{rn} \mathbf{J} \) \(\mathbf{S}_3 \) = \(\mathbf{I} - \frac{1}{n} \mathbf{R} - \frac{1}{r} \mathbf{C} + \frac{1}{rn} \mathbf{J} \)
Strata for analysis of variance

<table>
<thead>
<tr>
<th>Stratum</th>
<th>df</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1</td>
<td>ξ_0</td>
</tr>
<tr>
<td>Rows</td>
<td>$r - 1$</td>
<td>ξ_1</td>
</tr>
<tr>
<td>Columns</td>
<td>$n - 1$</td>
<td>ξ_2</td>
</tr>
<tr>
<td>Plots</td>
<td>$(r - 1)(n - 1)$</td>
<td>ξ_3</td>
</tr>
</tbody>
</table>

The expected sum of squares (SS) for treatments is:

$$E(\text{SS for treatments}) = Q + r(n - 1)\xi_2$$

where Q is a positive-definite quadratic form in the treatment effects. Treatments are orthogonal to rows, so:

$$E(\text{SS for contrasts } \perp \text{to rows}) = Q + (n - 1)\xi_2 + (n - 1)(r - 1)\xi_3$$

Therefore:

$$E(\text{MS residual}) = E(\text{SS residual}) \left(1 + r - 1\right) = 1 \cdot \frac{r - 1}{r - 1} \left(\xi_3 - r\xi_2^2\right)$$
<table>
<thead>
<tr>
<th>stratum</th>
<th>df</th>
<th>variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>1</td>
<td>ξ_0</td>
</tr>
<tr>
<td>rows</td>
<td>$r - 1$</td>
<td>ξ_1</td>
</tr>
<tr>
<td>columns</td>
<td>$n - 1$</td>
<td>ξ_2</td>
</tr>
<tr>
<td>plots</td>
<td>$(r - 1)(n - 1)$</td>
<td>ξ_3</td>
</tr>
</tbody>
</table>

}
Strata for analysis of variance

<table>
<thead>
<tr>
<th>stratum</th>
<th>df</th>
<th>variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>1</td>
<td>ξ₀</td>
</tr>
<tr>
<td>rows</td>
<td>r − 1</td>
<td>ξ₁</td>
</tr>
<tr>
<td>columns</td>
<td>n − 1</td>
<td>ξ₂</td>
</tr>
<tr>
<td>plots</td>
<td>(r − 1)(n − 1)</td>
<td>ξ₃</td>
</tr>
</tbody>
</table>

\[
E(\text{SS for anything}) = \text{SS}(E(\text{anything})) + \text{variance term}
\]
Strata for analysis of variance

<table>
<thead>
<tr>
<th>stratum</th>
<th>df</th>
<th>variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>1</td>
<td>ξ_0</td>
</tr>
<tr>
<td>rows</td>
<td>$r - 1$</td>
<td>ξ_1</td>
</tr>
<tr>
<td>columns</td>
<td>$n - 1$</td>
<td>ξ_2</td>
</tr>
<tr>
<td>plots</td>
<td>$(r - 1)(n - 1)$</td>
<td>ξ_3</td>
</tr>
</tbody>
</table>

\[
E(\text{SS for anything}) = \text{SS}(E(\text{anything})) + \text{variance term}
\]

so \[E(\text{SS for treatments}) = Q + r(n - 1)V/2,\] where \(Q\) is a positive-definite quadratic form in the treatment effects.
Strata for analysis of variance

<table>
<thead>
<tr>
<th>stratum</th>
<th>df</th>
<th>variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>1</td>
<td>ζ_0</td>
</tr>
<tr>
<td>rows</td>
<td>$r - 1$</td>
<td>ζ_1</td>
</tr>
<tr>
<td>columns</td>
<td>$n - 1$</td>
<td>ζ_2</td>
</tr>
<tr>
<td>plots</td>
<td>$(r - 1)(n - 1)$</td>
<td>ζ_3</td>
</tr>
</tbody>
</table>

\{ treatments \}

\{ residual \}

\[E(\text{SS for anything}) = \text{SS}(E(\text{anything})) + \text{variance term} \]

so \[E(\text{SS for treatments}) = Q + r(n - 1)\frac{V}{2}, \quad \text{where} \]

Q is a positive-definite quadratic form in the treatment effects.

Treatments are orthogonal to rows, so (putting $y = \frac{\zeta_2}{\zeta_3}$)

\[E(\text{SS for contrasts } \perp \text{ to rows}) = Q + (n - 1)\frac{\zeta_2}{\zeta_3} + (n - 1)(r - 1)\frac{\zeta_3}{\zeta_3} = \]

\[\frac{15}{32} \]
Strata for analysis of variance

<table>
<thead>
<tr>
<th>stratum</th>
<th>df</th>
<th>variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>1</td>
<td>$\bar{\xi}_0$</td>
</tr>
<tr>
<td>rows</td>
<td>$r - 1$</td>
<td>$\bar{\xi}_1$</td>
</tr>
<tr>
<td>columns</td>
<td>$n - 1$</td>
<td>$\bar{\xi}_2$</td>
</tr>
<tr>
<td>plots</td>
<td>$(r - 1)(n - 1)$</td>
<td>$\bar{\xi}_3$</td>
</tr>
</tbody>
</table>

$E(\text{SS for anything}) = \text{SS}(E(\text{anything})) + \text{variance term}$

so
$E(\text{SS for treatments}) = Q + r(n - 1)V/2$,
where
Q is a positive-definite quadratic form in the treatment effects.

Treatments are orthogonal to rows, so (putting $y = \bar{\xi}_2 / \bar{\xi}_3$)

$E(\text{SS for contrasts \perp to rows}) = Q + (n - 1)\bar{\xi}_2 + (n - 1)(r - 1)\bar{\xi}_3$

$= Q + (n - 1)(y + r - 1)\bar{\xi}_3$,
so
Strata for analysis of variance

<table>
<thead>
<tr>
<th>stratum</th>
<th>df</th>
<th>variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>1</td>
<td>ξ_0</td>
</tr>
<tr>
<td>rows</td>
<td>$r-1$</td>
<td>ξ_1</td>
</tr>
<tr>
<td>columns</td>
<td>$n-1$</td>
<td>ξ_2</td>
</tr>
<tr>
<td>plots</td>
<td>$(r-1)(n-1)$</td>
<td>ξ_3</td>
</tr>
</tbody>
</table>

\[
E(\text{SS for anything}) = \text{SS}(E(\text{anything})) + \text{variance term}
\]

so \[E(\text{SS for treatments}) = Q + r(n-1)V/2, \quad \text{where} \]

Q is a positive-definite quadratic form in the treatment effects.

Treatments are orthogonal to rows, so (putting $y = \frac{\xi_2}{\xi_3}$)

\[
E(\text{SS for contrasts } \perp \text{ to rows}) = Q + (n-1)\xi_2 + (n-1)(r-1)\xi_3 = Q + (n-1)(y + r - 1)\xi_3, \quad \text{so}
\]

\[
E(\text{MS residual}) = E \left(\frac{\text{SS residual}}{(n-1)(r-1)} \right) = \frac{1}{r-1} \left[(y + r - 1)\xi_3 - \frac{rV}{2} \right].
\]
Overestimation of variance

The estimator of V is $\hat{V} = \frac{2M}{r}$, where $M = $ MS residual.

We have shown that $E\left(\frac{2M}{r}\right) = \frac{2}{r-1} \left[\frac{(y + r - 1)}{r} \xi_3 - \frac{V}{2} \right]$, so smaller $V \implies$ larger \hat{V}.
Overestimation of variance

The estimator of V is $\hat{V} = \frac{2M}{r}$, where $M = \text{MS residual}$.

We have shown that $E \left(\frac{2M}{r} \right) = \frac{2}{r - 1} \left[\frac{(y + r - 1)}{r} \xi_3 - \frac{V}{2} \right]$, so smaller $V \implies$ larger \hat{V}.

Rewriting: $V = \frac{2\xi_3}{r} \left[1 + \frac{(y - 1)(D - r^2)}{r^2(n - 1)} \right]$ with $D = \sum_{i=1}^{n} \lambda_{ii}$.

Overestimation of variance

The estimator of V is $\hat{V} = \frac{2M}{r}$, where $M = \text{MS residual}$.

We have shown that $E\left(\frac{2M}{r}\right) = \frac{2}{r-1} \left[\frac{(y+r-1)}{r} \xi_3 - \frac{V}{2} \right]$, so smaller $V \implies$ larger \hat{V}.

Rewriting: $V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(D - r^2)}{r^2(n-1)} \right]$ with $D = \sum_{i=1}^{n} \lambda_{ii}$.

If simple restricted randomization forces no treatment to occur more than once per column, then $\lambda_{ii} = r$ for all i, so $D = rn$, so
Overestimation of variance

The estimator of V is $\hat{V} = \frac{2M}{r}$, where $M = \text{MS residual}$. We have shown that $E\left(\frac{2M}{r}\right) = 2\left[\frac{(y + r - 1)}{r}\xi_3 - \frac{V}{2}\right]$, so smaller $V \implies$ larger \hat{V}.

Rewriting: $V = \frac{2\xi_3}{r} \left[1 + \frac{(y - 1)(D - r^2)}{r^2(n - 1)}\right]$ with $D = \sum_{i=1}^{n} \lambda_{ii}$.

If simple restricted randomization forces no treatment to occur more than once per column, then $\lambda_{ii} = r$ for all i, so $D = rn$, so

$$V = \frac{2\xi_3}{r} \left[1 + \frac{(y - 1)(n - r)}{r(n - 1)}\right]$$

and

$$\frac{2E(M)}{r} = \frac{2\xi_3}{r} \left[1 + \frac{(y - 1)n}{r(n - 1)}\right]$$

which over-estimates V by $2(y - 1)\xi_3 / [r(n - 1)]$.
Simple restricted randomization: summary

Keep re-randomizing until you get a plan with no treatment more than once in any column. Analyse as usual.

- Inefficient to produce plans: many will have to be rejected.
- Variance is overestimated:

\[
V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(n-r)}{r(n-1)} \right]
\]

and

\[
E(\hat{V}) = \frac{2E(M)}{r} = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)n}{r(n-1)} \right]
\]
Simple restricted randomization: summary

Keep re-randomizing until you get a plan with no treatment more than once in any column. Analyse as usual.

- Inefficient to produce plans: many will have to be rejected.
- Variance is overestimated:

\[V = \frac{2\xi_3}{r} \left[1 + \frac{(y - 1)(n - r)}{r(n - 1)} \right] \]

and

\[E(\hat{V}) = \frac{2E(M)}{r} = \frac{2\xi_3}{r} \left[1 + \frac{(y - 1)n}{r(n - 1)} \right] \]

- Genuine treatment differences may not be detected.
Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more than once in any column. Easy to do this directly, eg

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more than once in any column. Easy to do this directly, eg

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>
Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more than once in any column.
Easy to do this directly, eg

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more than once in any column.
Easy to do this directly, eg

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more than once in any column.
Easy to do this directly, eg

```
A  B  C  D  E  F  G
C  D  E  F  G  A  B
G  A  B  C  D  E  F
B  C  D  E  F  G  A
D  E  F  G  A  B  C
```

Randomize rows, columns, treatments.
Use a Latinized design, but analyse as usual

Deliberately construct a design in which no treatment occurs more than once in any column. Easy to do this directly, eg

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Randomize rows, columns, treatments.

Same bias in estimator of variance as for simple restricted randomization, so there is a loss of power and genuine treatment differences may not be detected.
Super-valid restricted randomization

- Needs tables of designs.
Super-valid restricted randomization

- Needs tables of designs.
- Randomize rows, columns and treatments.
Super-valid restricted randomization

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
Super-valid restricted randomization

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
- **Same** average variance as in randomized complete-block design, but with **smaller range**.
Super-valid restricted randomization

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
- **Same** average variance as in randomized complete-block design, but with **smaller range**.
- The estimator of variance is unbiased when averaged over all comparisons in this one experiment.
Condition for unbiased estimator of variance

We have

\[V = \frac{2\xi_3}{r} \left[1 + \frac{(y - 1)(D - r^2)}{r^2(n - 1)} \right] \]

with \(D = \sum_{i=1}^{n} \lambda_{ii} \),

and

\[E(\hat{V}) = \frac{2}{r - 1} \left[\frac{(y + r - 1)}{r} \xi_3 - \frac{V}{2} \right], \]
Condition for unbiased estimator of variance

We have

\[V = \frac{2\xi_3}{r} \left[1 + \frac{(y - 1)(D - r^2)}{r^2(n - 1)} \right] \]

with \(D = \sum_{i=1}^{n} \lambda_{ii} \),

and \(E(\hat{V}) = \frac{2}{r - 1} \left[\frac{(y + r - 1)}{r} \xi_3 - \frac{V}{2} \right] \),

So \(V = E(\hat{V}) \iff D = r(r + n - 1). \)
We have \[V = \frac{2\xi_3}{r} \left[1 + \frac{(y-1)(D-r^2)}{r^2(n-1)} \right] \]

with \(D = \sum_{i=1}^{n} \lambda_{ii} \),

and \[E(\hat{V}) = \frac{2}{r-1} \left[\frac{(y+r-1)}{r} \xi_3 - \frac{V}{2} \right], \]

So \(V = E(\hat{V}) \iff D = r(r+n-1). \)

If treatment \(i \) occurs twice in any column then \(\lambda_{ii} \) increases by \(2^2 - 2 \times 1^2 = 2 \).
Condition for unbiased estimator of variance

We have

\[V = \frac{2\xi_3}{r} \left[1 + \frac{(y - 1)(D - r^2)}{r^2(n - 1)} \right] \]

with

\[D = \sum_{i=1}^{n} \lambda_{ii}, \]

and

\[E(\hat{V}) = \frac{2}{r - 1} \left[\frac{(y + r - 1)}{r} \xi_3 - \frac{V}{2} \right], \]

So

\[V = E(\hat{V}) \iff D = r(r + n - 1). \]

If treatment \(i \) occurs twice in any column then \(\lambda_{ii} \) increases by \(2^2 - 2 \times 1^2 = 2 \).

If each pair of rows has one column with the same treatment but no treatment occurs more than twice in any column then

\[D = r(r - 1) + rn = r(r + n - 1) \]

and so \(V = E(\hat{V}) \).
1. In every pair of rows, there is exactly one column in which the two treatments are the same.
A design from the tables

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>G</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>G</td>
<td>F</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>B</td>
<td>G</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>D</td>
<td>G</td>
<td>E</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>F</td>
</tr>
</tbody>
</table>

1. In every pair of rows, there is exactly one column in which the two treatments are the same.
2. No treatment occurs more than twice in any column.
A design from the tables

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>G</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>F</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>G</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>F</td>
</tr>
</tbody>
</table>

1. In every pair of rows, there is exactly one column in which the two treatments are the same.
2. No treatment occurs more than twice in any column.
3. If $m_i =$ the number of columns in which treatment i occurs twice, then $m_i - m_j \in \{-1, 0, 1\}$ for all other treatments j.
1. In every pair of rows, there is exactly one column in which the two treatments are the same.

2. No treatment occurs more than twice in any column.

3. If \(m_i \) = the number of columns in which treatment \(i \) occurs twice, then \(m_i - m_j \in \{-1, 0, 1\} \) for all other treatments \(j \).

4. Subject to conditions (1)–(3), the spread of the variances of the estimators of simple treatment differences is as small as possible.
Pairwise variances in the example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>G</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>G</td>
<td>F</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>B</td>
<td>G</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Minimum

\[V_{AD} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{2}{5}\tau \right] \]

Maximum

\[V_{AB} = \frac{2\sigma^2}{5} \left[1 - \rho + \frac{2}{5}\tau \right] \]

Average

\[V = \frac{2\sigma^2}{5} (1 - \rho) \]
Pairwise variances in the example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>F</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>G</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Minimum \(V_{AD} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{2}{5} \tau \right] \cdots - \frac{4}{5} \tau \)

Maximum \(V_{AB} = \frac{2\sigma^2}{5} \left[1 - \rho + \frac{2}{5} \tau \right] \cdots + \tau \)

Average \(V = \frac{2\sigma^2}{5} (1 - \rho) \cdots - \frac{1}{15} \tau \)
Pairwise variances in the example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>F</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>G</td>
<td>F</td>
<td>C</td>
<td>A</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Minimum: \(V_{AD} = \frac{2\sigma^2}{5} \left[1 - \rho - \frac{2}{5}\tau \right] \cdots - \frac{4}{5}\tau \)

Maximum: \(V_{AB} = \frac{2\sigma^2}{5} \left[1 - \rho + \frac{2}{5}\tau \right] \cdots + \tau \)

Average: \(V = \frac{2\sigma^2}{5} (1 - \rho) \cdots - \frac{1}{15}\tau \cdots - \frac{2}{3}\tau \)
Super-valid restricted randomization: summary

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
- Same average variance as in randomized complete-block design, but with smaller range.
- The estimator of variance is unbiased when averaged over all comparisons in this one experiment.
Super-valid restricted randomization: summary

- Needs tables of designs.
- Randomize rows, columns and treatments.
- Analyse as usual.
- Same average variance as in randomized complete-block design, but with smaller range.
- The estimator of variance is unbiased when averaged over all comparisons in this one experiment.
- There is no separate estimate of ρ or τ (or y), so treatments must be randomized and a single standard error given for all differences.
Efficient row-column designs

- Needs tables of designs.
Efficient row-column designs

- Needs tables of designs.
- Randomize rows and columns.

More complicated analysis (should be available in software).

Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.

Unbiased estimator of the variance of every treatment contrast.
Efficient row-column designs

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
Efficient row-column designs

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
- Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.
Efficient row-column designs

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
- Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.
- Unbiased estimator of the variance of every treatment contrast.
Given an incomplete-block design for \(n \) treatments in \(n \) blocks of size \(r \), define the number \(A (0 < A < 1) \), depending on the design, by

\[
A = \frac{2\sigma^2}{rV}
\]

if the analysis uses information orthogonal to blocks.
Columns form an Incomplete-block design (IBD)

Given an incomplete-block design for n treatments in n blocks of size r,
define the number A ($0 < A < 1$), depending on the design, by

$$A = \frac{2\sigma^2}{rV}$$

if the analysis uses information orthogonal to blocks.

Choose the **optimal** IBD: the one with the largest value of A.

Hall's Marriage Theorem \implies the blocks of this IBD can be arranged as the columns of a row-column design so that each treatment occurs once in each row.

Randomize rows and columns.
Given an incomplete-block design design for \(n \) treatments in \(n \) blocks of size \(r \),
define the number \(A (0 < A < 1) \), depending on the design, by

\[
A = \frac{2\sigma^2}{rV}
\]

if the analysis uses information orthogonal to blocks.

Choose the **optimal** IBD: the one with the largest value of \(A \).

Hall’s Marriage Theorem \(\implies \) the blocks of this IBD can be arranged as the columns of a row-column design so that each treatment occurs once in each row.
Given an incomplete-block design for \(n \) treatments in \(n \) blocks of size \(r \), define the number \(A (0 < A < 1) \), depending on the design, by

\[
A = \frac{2\sigma^2}{rV}
\]

if the analysis uses information orthogonal to blocks.

Choose the optimal IBD: the one with the largest value of \(A \).

Hall’s Marriage Theorem \(\implies \) the blocks of this IBD can be arranged as the columns of a row-column design so that each treatment occurs once in each row.

Randomize rows and columns.
Analyse by fitting rows, columns and treatments.

$$E(\text{MS residual}) = \xi_3$$

$$V_{ij} = \frac{2\xi_3}{rA_{ij}}$$

where A_{ij} is known from the design

$$V = \frac{2\xi_3}{rA} = \frac{2\sigma^2}{rA} (1 - \rho - \tau)$$
Example of a row-column design

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

\[V_{AB} = 1.044 \times \frac{2}{5} \xi_3 \]
\[V_{AC} = 1.089 \times \frac{2}{5} \xi_3 \]
\[V_{AD} = 1.091 \times \frac{2}{5} \xi_3 \]
\[V = 1.075 \times \frac{2}{5} \xi_3 \]
Example of a row-column design

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>F</td>
<td>G</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

\[
V_{AB} = 1.044 \times \frac{2}{5} \xi_3 \quad \text{normal method}
\]

\[
V_{AC} = 1.089 \times \frac{2}{5} \xi_3 \quad V = \frac{2}{5} \left(\frac{y + 4}{5} \right) \xi_3
\]

\[
V_{AD} = 1.091 \times \frac{2}{5} \xi_3 \quad \text{averaged over randomizations}
\]

\[
V = 1.075 \times \frac{2}{5} \xi_3 \quad \text{N.B. } y = \frac{\xi_2}{\xi_3} \geq 1
\]
Efficient row-column designs: summary

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
- Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.
- Unbiased estimator of the variance of every treatment contrast.
Efficient row-column designs: summary

- Needs tables of designs.
- Randomize rows and columns.
- More complicated analysis (should be available in software).
- Average variance may be less than, or more than, the average variance in randomized complete-block design, depending on the size of the correlations.
- Unbiased estimator of the variance of every treatment contrast.
- There is no need to randomize treatments; the most important differences can be given the lowest variance.
Comparing super-valid restricted randomization and efficient row-column designs

\[
y = \frac{\xi_2}{\xi_3} = \frac{\text{columns stratum variance}}{\text{plots stratum variance}} \geq 1 \quad \text{(we believe)}
\]
Comparing super-valid restricted randomization and efficient row-column designs

\[y = \frac{\tau_2}{\tau_3} = \frac{\text{columns stratum variance}}{\text{plots stratum variance}} \geq 1 \quad \text{(we believe)} \]

The best row-column design is more efficient than super-valid restricted randomization if and only if \(y \) exceeds the following value.
Comparing super-valid restricted randomization and efficient row-column designs

\[y = \frac{\xi_2}{\xi_3} \geq 1 \quad \text{(we believe)} \]

The best row-column design is more efficient than super-valid restricted randomization if and only if \(y \) exceeds the following value.

<table>
<thead>
<tr>
<th>(r)</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.68</td>
<td>1.83</td>
<td>1.86</td>
<td>2.02</td>
<td>2.13</td>
<td>2.27</td>
</tr>
<tr>
<td>4</td>
<td>1.26</td>
<td>1.47</td>
<td>1.57</td>
<td>1.71</td>
<td>1.80</td>
<td>1.86</td>
</tr>
<tr>
<td>5</td>
<td>1.21</td>
<td>1.37</td>
<td>1.48</td>
<td>1.58</td>
<td>1.64</td>
<td></td>
</tr>
</tbody>
</table>
Use a carefully chosen Latinized design with REML/ANOVA estimates of variance components

Choose a design with the λ_{ij} as equal as possible. Randomize rows and columns. Estimate treatment differences from the usual randomized-complete-blocks analysis.

$E(\text{MS residual from complete-block analysis}) = \xi_3 + \xi_2 - \xi_3 r (n - 1)$

$E(\text{MS residual from row-column analysis}) = \xi_3 Hence unbiased estimators of ξ_2 and ξ_3. But this estimator of $V=\frac{2r}{\xi_3 + (n-r)(\xi_2 - \xi_3)}$ does not have a χ^2 distribution, so how do we do hypothesis tests? Also, there are so few effective df for ξ_2 that these estimates have very poor precision.
Use a carefully chosen Latinized design with REML/ANOVA estimates of variance components

Choose a design with the λ_{ij} as equal as possible. Randomize rows and columns. Estimate treatment differences from the usual randomized-complete-blocks analysis.

$$E(\text{MS residual from complete-block analysis}) = \xi_3 + \frac{\xi_2 - \xi_3}{r(n - 1)}$$

$$E(\text{MS residual from row-column analysis}) = \xi_3$$
Use a carefully chosen Latinized design with REML/ANOVA estimates of variance components

Choose a design with the λ_{ij} as equal as possible. Randomize rows and columns.
Estimate treatment differences from the usual randomized-complete-blocks analysis.

$$E(\text{MS residual from complete-block analysis}) = \xi_3 + \frac{\xi_2 - \xi_3}{r(n-1)}$$

$$E(\text{MS residual from row-column analysis}) = \xi_3$$

Hence unbiased estimators of ξ_2 and ξ_3 and of

$$V = \frac{2}{r} \left[\xi_3 + \frac{(n-r)(\xi_2 - \xi_3)}{r(n-1)} \right].$$
Use a carefully chosen Latinized design with REML/ANOVA estimates of variance components

Choose a design with the λ_{ij} as equal as possible. Randomize rows and columns. Estimate treatment differences from the usual randomized-complete-blocks analysis.

\[
E(\text{MS residual from complete-block analysis}) = \zeta_3 + \frac{\bar{\zeta}_2 - \bar{\zeta}_3}{r(n-1)}
\]

\[
E(\text{MS residual from row-column analysis}) = \zeta_3
\]

Hence unbiased estimators of ζ_2 and ζ_3 and of

\[
V = \frac{2}{r} \left[\zeta_3 + \frac{(n-r)(\bar{\zeta}_2 - \bar{\zeta}_3)}{r(n-1)} \right].
\]

But this estimator of V does not have a χ^2 distribution, so how do we do hypothesis tests? Also, there are so few effective df for ζ_2 that these estimates have very poor precision.
Use an efficient row-column design and analyse with combination of information.

Choose an optimal row-column design as before.
Use an efficient row-column design and analyse with combination of information

Choose an optimal row-column design as before.

Analyse using
- ANOVA with combination of information across strata, or
- REML, or
- mixed-model software.
Choose an optimal row-column design as before.

Analyse using

- ANOVA with combination of information across strata, or
- REML, or
- mixed-model software.

These should all be equivalent, but different implementations can give different results.
Choose an optimal row-column design as before.

Analyse using

- ANOVA with combination of information across strata, or
- REML, or
- mixed-model software.

These should all be equivalent, but different implementations can give different results.

As before, there are so few effective df for ζ_2 that these estimates have very poor precision, and so are not recommended.

