
MAS 108 Probability I

Notes 5 Autumn 2005

The Theorem of Total Probability

Sometimes we are faced with a situation where we do not know the probability of an
eventA, but we know what its probability would be if we were sure that some other
event had occurred.

Example An ice-cream seller has to decide whether to order more stock for the Bank
Holiday weekend. He estimates that, if the weather is sunny, he has a 90% chance of
selling all his stock; if it is cloudy, his chance is 60%; and if it rains, his chance is
only 20%. According to the weather forecast, the probability of sunshine is 30%, the
probability of cloud is 45%, and the probability of rain is 25%. (We assume that these
are all the possible outcomes, so that their probabilities must add up to 100%.) What
is the overall probability that the salesman will sell all his stock?

This problem is answered by theTheorem of Total Probability, which we now
state. First we need a definition. The eventsE1, E2, . . . , En form a partition of the
sample space if the following two conditions hold:

(a) the events are pairwise disjoint, that is,Ei ∩E j = /0 for any pair of eventsEi

andE j ;

(b) E1∪E2∪·· ·∪En = S .

Another way of saying the same thing is that every outcome in the sample space lies
in exactly one of the eventsE1, E2, . . . ,En. The picture shows the idea of a partition.

E1 E2 . . . En
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Now we state and prove the Theorem of Total Probability.

Theorem of Total Probability Let E1, E2, . . . , En form a partition of the sample
space withP(Ei) 6= 0 for all i, and letA be any event. Then

(i) P(A) = P(E1)×P(A | E1)+P(E2)×P(A | E2)+ · · ·+P(En)×P(A | En).

(ii) Furthermore, ifP(A) 6= 0 then

P(E1 | A)+P(E2 | A)+ · · ·+P(En | A) = 1.

Proof Consider the eventsA∩E1, A∩E2, . . . , A∩En. These events are pairwise
disjoint; for any outcome lying in bothA∩Ei andA∩E j would lie in bothEi and
E j , and by assumption there are no such outcomes. Moreover, the union of all these
events isA, since every outcome lies in one of theEi . So, by Axiom 3a, we conclude
that

P(A) =
n

∑
i=1

P(A∩Ei). (∗∗)

But P(A∩Ei) = P(Ei)×P(A | Ei). Substituting into (∗∗) gives

P(A) =
n

∑
i=1

P(Ei)×P(A | Ei),

which is (i).

E1 E2 . . . En
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Now, dividing (∗∗) by P(A) gives

1 =
n

∑
i=1

P(A∩Ei)
P(A)

=
n

∑
i=1

P(Ei | A),

giving (ii).

One special case of the Theorem of Total Probability is very commonly used, and
is worth stating in its own right. For any eventA, the eventsA andA′ form a partition
of S . To say that bothA andA′ have non-zero probability is just to say thatP(A) 6= 0,1.
Thus we have the following corollary:
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Corollary 1 Let A andB be events, and suppose thatP(A) 6= 0,1. Then

P(B) = P(A)×P(B | A)+P(A′)×P(B | A′).

You will now realise that the Theorem of Total Probability is really being used
when you calculate probabilities by tree diagrams. It is better to get into the habit of
using it directly, since it avoids any accidental assumptions of independence.

More about conditional probability

Example (Ice-cream: part 2)Consider the ice-cream salesman in our example. Let
A1 be the event ‘it is sunny’,A2 the event ‘it is cloudy’, andA3 the event ‘it is rainy’.
ThenA1, A2 andA3 form a partition of the sample space, and we are given that

P(A1) = 0.3, P(A2) = 0.45, P(A3) = 0.25.

Let B be the event ‘the salesman sells all his stock’. The other information we are
given is that

P(B | A1) = 0.9, P(B | A2) = 0.6, P(B | A3) = 0.2.

By the Theorem of Total Probability,

P(B) = (0.9×0.3)+(0.6×0.45)+(0.2×0.25) = 0.59.

Example (Eye-colour: part 2) We know thatP(D) = 1/3 andP(D′) = 2/3, where
D is the event ‘John’s genes are BB’. Now John marries Jill, who has blue eyes. What
is the probability that their first child has brown eyes?

Solution Jill’s genes must be bb, so the gene that the child gets from Jill must be b.
If John’s genes are BB then the child will get a B gene from him, so the child will be
Bb and have brown eyes. If John is Bb then the gene that the child gets from him is
equally likely to be B or b, so the child is equally likely to be Bb or bb; in the first case
the child has brown eyes, in the second case blue. Thus if we putC = ‘the child has
brown eyes’ thenP(C | D) = 1 andP(C | D′) = 1/2. Now

P(C) = P(D)P(C | D)+P(D′)P(C | D′)

=
1
3
×1+

2
3
× 1

2
=

2
3
.
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Example A shop buys loaves of bread from three bakeries:

30% from bakeryA
50% from bakeryB
20% from bakeryC

10% ofA’s loaves are underweight
2% ofB’s loaves are underweight

15% ofC’s loaves are underweight

A loaf is chosen at random in the shop. What is the probability that the loaf is under-
weight?

Solution Let U be the event that the loaf is underweight. Then

P(U) = P(A)P(U | A)+P(B)P(U | B)+P(C)P(U |C)
= 0.3×0.1+0.5×0.02+0.2×0.15= 0.07.

Sampling revisited

Suppose that we sample fromN objects without replacement, and thatmof the objects
are red. LetA be ‘first object is red’ andB be ‘second object is red’. Some people
think thatP(B) is obviously the same asP(A), while others are very suspicious about
it. Here is the argument, using the Theorem of Total Probability.

P(A) =
m
N

P(A′) =
N−m

N

P(B | A) =
m−1
N−1

P(B | A′) =
m

N−1

So

P(B) = P(A)×P(B | A)+P(A′)×P(B | A′)

=
m
N
×

(
m−1
N−1

)
+

(
N−m

N

)
×

(
m

N−1

)
=

m
N(N−1)

[m−1+N−m]

=
m(N−1)
N(N−1)

=
m
N

.
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Bayes’ Theorem

There is a very big difference betweenP(A | B) andP(B | A).
For example, in a murder trial, an expert witness who has carried out a DNA test

is called. He testifies that, given that the suspect is innocent, the chance of getting
a positive test result is one in a million. Rather than say ‘he must be guilty then’,
we have to realise that we are not interested in this value, but in the probability that
the suspect is innocent given the positive test result, which is completely different.
[Regrettably, the House of Lords has ruled that juries are unable to understand this
difference, and it must not be explained, for fear of confusing them.]

Another place where the difference occurs is in medicine. Suppose that a new test
is developed to identify people who are liable to suffer from some genetic disease in
later life. Of course, no test is perfect; there will be some carriers of the defective gene
who test negative, and some non-carriers who test positive. So, for example, letA be
the event ‘the patient is a carrier’, andB the event ‘the test result is positive’.

The scientists who develop the test are concerned with the probabilities that the
test result is wrong, that is, withP(B | A′) (the probability of a false positive result on
someone who doesn’t have the gene) andP(B′ | A) (the probability of a false negative
result for someone who does have it).

However, a patient who has taken the test has different concerns. If I tested posi-
tive, what is the chance that I have the disease? If I tested negative, how sure can I be
that I am not a carrier? In other words,P(A | B) andP(A′ | B′).

These conditional probabilities are related byBayes’ Theorem:

Bayes’ Theorem Let A andB be events with non-zero probability. Then

P(B | A) =
P(A | B)×P(B)

P(A)
.

The proof is not hard. We have

P(B | A)×P(A) = P(A∩B) = P(A | B)×P(B),

using the definition of conditional probability twice. (Note that we need bothA andB
to have non-zero probability here.) Now divide this equation byP(A) to get the result.

If P(B) 6= 0,1 andP(A) 6= 0, then we can use the corollary to the Theorem of Total
Probability to write this as

P(B | A) =
P(A | B)×P(B)

P(A | B)×P(B)+P(A | B′)×P(B′)
.

Bayes’ Theorem is often stated in this form.
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Example (Ice-cream: part 3)Consider the ice-cream salesman. Given that he sold
all his stock of ice-cream, what is the probability that the weather was sunny? (This
question might be asked by the warehouse manager who doesn’t know what the weather
was actually like.) In the notation that we used before,A1 is the event ‘it is sunny’ and
B the event ‘the salesman sells all his stock’. We are asked forP(A1 | B). We were
given thatP(B | A1) = 0.9 and thatP(A1) = 0.3, and we calculated thatP(B) = 0.59.
So by Bayes’ Theorem,

P(A1 | B) =
P(B | A1)P(A1)

P(B)
=

0.9×0.3
0.59

= 0.46

to 2 d.p.

Example (Bakery: part 2) If a randomly chosen loaf is found to be underweight,
what is the probability that it came from bakeryC?

This is justP(C |U), and Bayes’ Theorem gives

P(C |U) =
P(U |C)×P(C)

P(U)
=

0.15×0.2
0.07

=
3
7
.

Example (Eye-colour: part 3) Now suppose that John and Jill have four children,
all brown-eyed. What is our new assessment of the probability that John’s genes are
BB?

Solution Let F be the event that all four children are brown-eyed. The children
inherit genes independently of each other, so

P(F | D) = 1

and

P(F | D′) =
(

1
2

)4

=
1
16

.

The Theorem of Total Probability gives:

P(F) = P(D)P(F | D)+P(D′)P(F | D′) =
1
3
×1+

2
3
× 1

16
=

3
8
.

Then Bayes’ Theorem gives

P(D | F) =
P(F | D)P(D)

P(F)
=

1/3
3/8

=
8
9
.

We can interpret this conditional probability as a measure of our belief that John is BB
given all the information available.
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Example Consider the clinical test described earlier. Suppose that 1 in 1000 of the
population is a carrier of the disease. Suppose also that the probability that a carrier
tests negative is 1%, while the probability that a non-carrier tests positive is 5%. (A
test achieving these values would be regarded as very successful.) LetA be the event
‘the patient is a carrier’, andB the event ‘the test result is positive’. We are given that
P(A) = 0.001 (so thatP(A′) = 0.999), and that

P(B | A) = 0.99, P(B | A′) = 0.05.

(a) A patient has just had a positive test result. What is the probability that the patient
is a carrier? The answer is

P(A | B) =
P(B | A)P(A)

P(B | A)P(A)+P(B | A′)P(A′)

=
0.99×0.001

(0.99×0.001)+(0.05×0.999)

=
0.00099
0.05094

= 0.0194.

(b) A patient has just had a negative test result. What is the probability that the patient
is a carrier? The answer is

P(A | B′) =
P(B′ | A)P(A)

P(B′ | A)P(A)+P(B′ | A′)P(A′)

=
0.01×0.001

(0.01×0.001)+(0.95×0.999)

=
0.00001
0.94906

= 0.00001.

So a patient with a negative test result can be reassured; but a patient with a posi-
tive test result still has less than 2% chance of being a carrier, so is likely to worry
unnecessarily.

Of course, these calculations assume that the patient has been selected at random
from the population. If the patient has a family history of the disease, the calculations
would be quite different.

Example 2% of the population have a certain blood disease in a serious form; 10%
have it in a mild form; and 88% don’t have it at all. A new blood test is developed;
the probability of testing positive is 9/10 if the subject has the serious form, 6/10 if the
subject has the mild form, and 1/10 if the subject doesn’t have the disease.

I have just tested positive. What is the probability that I have the serious form of
the disease?
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Solution Let A1 be ‘has disease in serious form’,A2 be ‘has disease in mild form’,
andA3 be ‘doesn’t have disease’. LetB be ‘test positive’. Then we are given thatA1,
A2, A3 form a partition and

P(A1) = 0.02 P(A2) = 0.1 P(A3) = 0.88
P(B | A1) = 0.9 P(B | A2) = 0.6 P(B | A3) = 0.1

Thus, by the Theorem of Total Probability,

P(B) = 0.9×0.02+0.6×0.1+0.1×0.88= 0.166,

and then by Bayes’ Theorem,

P(A1 | B) =
P(B | A1)P(A1)

P(B)
=

0.9×0.02
0.166

= 0.108

to 3 d.p.

Proposition 6 Let E1, E2, . . . , En be pairwise disjount events whose union is the
whole sample space. LetA andB be events withP(B∩Ei) > 0 for i = 1, . . . ,n. Then

P(A | B) =
n

∑
i=1

[P(A | B∩Ei)×P(Ei | B)] .

Proof

P(A | B) =
P(A∩B)

P(B)
, by the definition of conditional probability,

=
n

∑
i=1

P(A∩B | Ei)×P(Ei)
P(B)

, by the Theorem of Total Probability forA∩B,

=
n

∑
i=1

[
P(A∩B∩Ei)

P(Ei)
× P(Ei)

P(B)

]
, by the definition of conditional probability,

=
n

∑
i=1

[
P(A∩B∩Ei)

P(B)

]
=

n

∑
i=1

[
P(A∩B∩Ei)

P(B)
× P(B∩Ei)

P(B∩Ei)

]
, because multiplication by 1 changes nothing!

=
n

∑
i=1

[
P(A∩B∩Ei)

P(B∩Ei)
× P(B∩Ei)

P(B)

]
,

=
n

∑
i=1

[P(A | B∩Ei)×P(Ei | B)] .
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Example Two channels,C andD, are used to send electronic information as a sequence
of 0s and 1s. The probability of correct transmission is

C D
1 sent 0.95 0.99
0 sent 0.98 0.91

In each channel, 2/3 of the signals are 1s. Also, channelC sends 3/5 of the traffic.
Find the probability that a 1 is received when a single item is sent.

Solution Put
S1 = “1 is sent” S0 = “0 is sent”
R1 = “1 is received” R0 = “0 is received”

Then we wantP(R1).
UseS0 andS1 as the partition. Then

P(R1 |C) = P(R1 | S1∩C)P(S1 |C)+P(R1 | S0∩C)P(S0 |C)

= 0.95× 2
3

+0.02× 1
3

= 0.64

and

P(R1 | D) = P(R1 | S1∩D)P(S1 | D)+P(R1 | S0∩D)P(S0 | D)

= 0.99× 2
3

+0.09× 1
3

= 0.69,

so

P(R1) = P(R1 |C)P(C)+P(R1 | D)P(D)

= 0.64× 3
5

+0.69× 2
5

= 0.66.

Can you find what is the probability that the signal is sent correctly if a 1 is re-
ceived?
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